ABSTRACT
Humanin (HN) is a mitochondrial-derived peptide with robust cytoprotective effects in many cell types. Although the administration of HN analogs has been proposed to treat degenerative diseases, its role in the pathogenesis of cancer is poorly understood. Here, we evaluated whether HN affects the chemosensitivity of glioblastoma (GBM) cells. We found that chemotherapy upregulated HN expression in GBM cell lines and primary cultures derived from GBM biopsies. An HN analog (HNGF6A) boosted chemoresistance, increased the migration of GBM cells and improved their capacity to induce endothelial cell migration and proliferation. Chemotherapy also upregulated FPR2 expression, an HN membrane-bound receptor, and the HNGF6A cytoprotective effects were inhibited by an FPR2 receptor antagonist (WRW4). These effects were observed in glioma cells with heterogeneous genetic backgrounds, i.e., glioma cells with wild-type (wtIDH) and mutated (mIDH) isocitrate dehydrogenase. HN silencing using a baculoviral vector that encodes for a specific shRNA for HN (BV.shHN) reduced chemoresistance, and impaired the migration and proangiogenic capacity of GBM cells. Taken together, our findings suggest that HN boosts the hallmark characteristics of GBM, i.e., chemoresistance, migration and endothelial cell proliferation. Thus, strategies that inhibit the HN/FPR2 pathway may improve the response of GBM to standard therapy.
ABSTRACT
Introduction: Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. According to the 2022 International League Against Epilepsy classification, FCD type II is characterized by dysmorphic neurons (IIa and IIb) and may be associated with balloon cells (IIb). We present a multicentric study to evaluate the transcriptomes of the gray and white matters of surgical FCD type II specimens. We aimed to contribute to pathophysiology and tissue characterization. Methods: We investigated FCD II (a and b) and control samples by performing RNA-sequencing followed by immunohistochemical validation employing digital analyses. Results: We found 342 and 399 transcripts differentially expressed in the gray matter of IIa and IIb lesions compared to controls, respectively. Cholesterol biosynthesis was among the main enriched cellular pathways in both IIa and IIb gray matter. Particularly, the genes HMGCS1, HMGCR, and SQLE were upregulated in both type II groups. We also found 12 differentially expressed genes when comparing transcriptomes of IIa and IIb lesions. Only 1 transcript (MTRNR2L12) was significantly upregulated in FCD IIa. The white matter in IIa and IIb lesions showed 2 and 24 transcripts differentially expressed, respectively, compared to controls. No enriched cellular pathways were detected. GPNMB, not previously described in FCD samples, was upregulated in IIb compared to IIa and control groups. Upregulations of cholesterol biosynthesis enzymes and GPNMB genes in FCD groups were immunohistochemically validated. Such enzymes were mainly detected in both dysmorphic and normal neurons, whereas GPNMB was observed only in balloon cells. Discussion: Overall, our study contributed to identifying cortical enrichment of cholesterol biosynthesis in FCD type II, which may correspond to a neuroprotective response to seizures. Moreover, specific analyses in either the gray or the white matter revealed upregulations of MTRNR2L12 and GPNMB, which might be potential neuropathological biomarkers of a cortex chronically exposed to seizures and of balloon cells, respectively.
ABSTRACT
Resumen La humanina es un péptido derivado de la mitocondria con efectos protectores robustos contra una gran variedad de estímulos citotóxicos en diversos tipos celulares. Esto la convierte en un blanco terapéutico interesante para muchas enfermedades, como el cáncer y enfermedades neurodegenerativas, entre otras. Además, este péptido podría utilizarse como un biomarcador en estas enfermedades. Durante la última década, han sido desarrollados análogos y péptido-miméticos de la humanina que muestran resultados prometedores en modelos preclínicos. A su vez, también se está explorando el potencial terapéutico de vectores de terapia génica que puedan sobreexpresar o silenciar la humanina endógena. Varios puntos importantes a considerar antes de trasladar estas estrategias terapéuticas a la clínica son su posible papel en la progresión del cáncer y la eventual generación de quimiorresistencia. Todos estos temas serán abordados en este artículo de revisión.
Abstract Humanin is a mitochondrial-derived peptide which shows robust protective effects against large series of cytotoxic stimuli in many cell types. This makes it an interesting therapeutic target for many diseases, including cancer and neurodegenerative diseases, among others. Furthermore, this peptide could be used as a biomarker for such diseases. Over the last decade, humanin analogs and peptide mimetics have been developed, which exert highly promising results in preclinical models. Besides, the therapeutic potential of gene therapy vectors that overexpress or silence endogenous humanin is under evaluation. Nonetheless, its possible role in cancer progression and chemoresistance are critical issues to be addressed before translating these therapeutic approaches to the clinic. All these matters will be covered in this review.
Subject(s)
Neurodegenerative Diseases , Volition , Disease , NeoplasmsABSTRACT
Astroglial cells are crucial for central nervous system (CNS) homeostasis. They undergo complex morpho-functional changes during aging and in response to hormonal milieu. Ovarian hormones positively affect different astroglia parameters, including regulation of cell morphology and release of neurotrophic and neuroprotective factors. Thus, ovarian hormone loss during menopause has profound impact in astroglial pathophysilogy and has been widely associated to the process of brain aging. Humanin (HN) is a secreted mitochondrial-encoded peptide with neuroprotective effects. It is localized in several tissues with high metabolic rate and its expression decreases with age. In the brain, humanin has been found in glial cells in physiological conditions. We previously reported that surgical menopause induces hippocampal mitochondrial dysfunction that mimics an aging phenotype. However, the effect of ovarian hormone deprivation on humanin expression in this area has not been studied. Also, whether astrocytes express and release humanin and the regulation of such processes by ovarian hormones remain elusive. Although humanin has also proven to be beneficial in ameliorating cognitive impairment induced by different insults, its putative actions on structural synaptic plasticity have not been fully addressed. In a model of surgical menopause in rats, we studied hippocampal humanin expression and localization by real-time quantitative polymerase chain reaction (RT-qPCR) and double immunohistochemistry, respectively. Humanin production and release and ovarian hormone regulation of such processes were studied in cultured astrocytes by flow cytometry and ELISA, respectively. Humanin effects on glutamate-induced structural synaptic alterations were determined in primary cultures of hippocampal neurons by immunocytochemistry. Humanin expression was lower in the hippocampus of ovariectomized rats and its immunoreactivity colocalized with astroglial markers. Chronic ovariectomy also promoted the presence of less complex astrocytes in this area. Ovarian hormones increased humanin intracellular content and release by cultured astrocytes. Humanin prevented glutamate-induced dendritic atrophy and reduction in puncta number and total puncta area for pre-synaptic marker synaptophysin in cultured hippocampal neurons. In conclusion, astroglial functional and morphological alterations induced by chronic ovariectomy resemble an aging phenotype and could affect astroglial support to neuronal function by altering synaptic connectivity and functionality. Reduced astroglial-derived humanin may represent an underlying mechanism for synaptic dysfunction and cognitive decline after menopause.
ABSTRACT
INTRODUCTION: Mitochondrial-derived peptides (MDPs) are encoded within the mitochondrial genome. They signal within the cell or are released to act as autocrine/paracrine/endocrine cytoprotective factors playing a key role in the cellular stress response. The first reported and better characterized MDP is humanin (HN), which exerts robust protective effects against a myriad of cytotoxic stimuli in many cell types. These effects have led to the evaluation of HN and its analogs as therapeutic targets for several chronic diseases. Areas covered: We describe the latest findings on the mechanism of action of HN and discuss the role of HN as therapeutic target for neurodegenerative and cardiovascular diseases, diabetes, male infertility, and cancer. Since HN can be detected in circulation, we also depict its value as a biomarker for these diseases. Expert opinion: HN analogs and peptide mimetics have been developed over the last decade and show promising results in preclinical models of degenerative diseases. Local administration of gene therapy vectors that overexpress or silence endogenous HN could also hold therapeutic potential. Controversy on the role of HN in cancer progression and chemoresistance should be addressed before the translation of these therapeutic approaches.
Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Molecular Targeted Therapy , Neoplasms/therapy , Animals , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Disease Models, Animal , Genetic Therapy/methods , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mitochondria/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/therapyABSTRACT
Pituitary tumors are the most common primary intracranial neoplasms. Humanin (HN) and Rattin (HNr), a rat homolog of HN, are short peptides with a cytoprotective action. In the present study, we aimed to evaluate whether endogenous HNr plays an antiapoptotic role in pituitary tumor cells. Thus, we used RNA interference based on short-hairpin RNA (shRNA) targeted to HNr (shHNr). A plasmid including the coding sequences for shHNr and dTomato fluorescent reporter gene was developed (pUC-shHNr). Transfection of somatolactotrope GH3 cells with pUC-shHNr increased apoptosis, suggesting that endogenous HNr plays a cytoprotective role in pituitary tumor cells. In order to evaluate the effect of blockade of endogenous HNr expression in vivo, we constructed a recombinant baculovirus (BV) encoding shHNr (BV-shHNr). In vitro, BV-shRNA was capable of transducing more than 80% of GH3 cells and decreased HNr mRNA. Also, BV-shHNr increased apoptosis in transduced GH3 cells. Intratumor injection of BV-shHNr to nude mice bearing s.c. GH3 tumors increased the number of apoptotic cells, delayed tumor growth and enhanced survival rate, suggesting that endogenous HNr may be involved in pituitary tumor progression. These preclinical data suggests that the silencing of HN expression could have a therapeutic impact on the treatment of pituitary tumors.
Subject(s)
Baculoviridae/physiology , Intracellular Signaling Peptides and Proteins/genetics , Pituitary Neoplasms/genetics , RNA Interference , Animals , Apoptosis/drug effects , Baculoviridae/genetics , Cell Line, Tumor , Female , Genetic Therapy , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Nude , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Transduction, GeneticABSTRACT
Humanin (HN) and Rattin (HNr), its homologous in the rat, are peptides with cytoprotective action in several cell types such as neurons, lymphocytes and testicular germ cells. Previously, we have shown that HNr is expressed in pituitary cells and that HN inhibited the apoptotic effect of TNF-α in both normal and tumor pituitary cells. The aim of the present study was to identify signaling pathways that mediate the antiapoptotic effect of HN in anterior pituitary cells from ovariectomized rats and in GH3 cells, a somatolactotrope cell line. We assessed the role of STAT3, JNK, Akt and MAPKs as well as proteins of the Bcl-2 family, previously implicated in the antiapoptotic effect of HN. We also evaluated the participation of NF-κB in the antiapoptotic action of HN. STAT3 inhibition reversed the inhibitory effect of HN on TNF-α-induced apoptosis in normal and pituitary tumor cells, indicating that STAT3 signaling pathway mediates the antiapoptotic effect of HN on pituitary cells. Inhibition of NF-κB pathway did not affect action of HN on normal anterior pituitary cells but blocked the cytoprotective effect of HN on TNF-α-induced apoptosis of GH3 cells, suggesting that the NF-κB pathway is involved in HN action in tumor pituitary cells. HN also induced NF-κB-p65 nuclear translocation in these cells. In pituitary tumor cells, JNK and MEK inhibitors also impaired HN cytoprotective action. In addition, HN increased Bcl-2 expression and decreased Bax mitochondrial translocation. Since HN expression in GH3 cells is higher than in normal pituitary cells, we may suggest that through multiple pathways HN could be involved in pituitary tumorigenesis.