Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 633
Filter
1.
Mech Ageing Dev ; 221: 111961, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960099

ABSTRACT

This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.

2.
Front Neurosci ; 18: 1402996, 2024.
Article in English | MEDLINE | ID: mdl-38975245

ABSTRACT

Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.

3.
J Huntingtons Dis ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995796

ABSTRACT

 Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by impaired motor function and cognitive decline, ultimately leading to death. HD is caused by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein, which is linked to decreased HTT turnover, increased HTT proteolysis, increased HTT aggregation, and subsequent neuronal death. In this review, we explore the mechanism of the protective effect of blocking HTT proteolysis at D586, which has been shown to rescue the HD phenotype in HD mouse models. Until recently, the mechanism remained unclear. Herein, we discuss how blocking HTT proteolysis at D586 promotes HTT turnover by correcting autophagy, and making HTT a better autophagy substrate, through post-translational myristoylation of HTT at G553.

4.
Hepatol Int ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976227

ABSTRACT

OBJECTIVE: The detection of autoantibodies is essential to diagnose autoimmune hepatitis (AIH). Particularly in children, specificity of autoantibodies decreases due to lower titers being diagnostic and being present not only in AIH but also in other liver diseases. Recently, quantification of polyreactive IgG (pIgG) for detection of adult AIH showed the highest overall accuracy compared to antinuclear antibodies (ANA), anti-smooth muscle antibodies (anti-SMA), anti-liver kidney microsomal antibodies (anti-LKM) and anti-soluble liver antigen/liver pancreas antibodies (anti-SLA/LP). We aimed to evaluate the diagnostic value of pIgG for pediatric AIH. DESIGN: pIgG, quantified using HIP1R/BSA coated ELISA, and immunofluorescence on rodent tissue sections were performed centrally. The diagnostic fidelity to diagnose AIH was compared to conventional autoantibodies of AIH in training and validation cohorts from a retrospective, European multi-center cohort from nine centers from eight European countries composed of existing biorepositories from expert centers (n = 285). RESULTS: IgG from pediatric AIH patients exhibited increased polyreactivity to multiple protein and non-protein substrates compared to non-AIH liver diseases and healthy children. pIgG had an AUC of 0.900 to distinguish AIH from non-AIH liver diseases. pIgG had a 31-73% higher specificity than ANA and anti-SMA and comparable sensitivity that was 6-20 times higher than of anti-SLA/LP, anti-LC1 and anti-LKM. pIgG had a 21-34% higher accuracy than conventional autoantibodies, was positive in 43-75% of children with AIH and normal IgG and independent from treatment response. CONCLUSION: Detecting pIgG improves the diagnostic evaluation of pediatric AIH compared to conventional autoantibodies, primarily owing to higher accuracy and specificity.

5.
Mol Ther Nucleic Acids ; 35(3): 102246, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39027419

ABSTRACT

Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.

6.
Curr Neurol Neurosci Rep ; 24(8): 255-264, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861215

ABSTRACT

PURPOSE OF REVIEW: Huntington's disease (HD) is an autosomal-dominant disorder caused by a pathological expansion of a trinucleotide repeat (CAG) on exon 1 of the huntingtin (HTT) gene. HD is characterized by the presence of chorea, alongside other hyperkinesia, parkinsonism and a combination of cognitive and behavioural features. Currently, there are no disease-modifying therapies (DMTs) for HD, and the only intervention(s) with approved indication target the treatment of chorea. This article reviews recent research on the clinical development of DMTs and newly developed tools that enhance clinical trial design towards a successful DMT in the future. RECENT FINDINGS: HD is living in an era of target-specific drug development with emphasis on the mechanisms related to mutant Huntingtin (HTT) protein. Examples include antisense oligonucleotides (ASO), splicing modifiers and microRNA molecules that aim to reduce the levels of mutant HTT protein. After initial negative results with ASO molecules Tominersen and WVE-120101/ WVE-120102, the therapeutic landscape continues to expand, with various trials currently under development to document proof-of-concept and safety/tolerability. Immune-targeted therapies have also been evaluated in early-phase clinical trials, with promising preliminary findings. The possibility of quantifying mHTT in CSF, along with the development of an integrated biological staging system in HD are important innovations applicable to clinical trial design that enhance the drug development process. Although a future in HD with DMTs remains a hope for those living with HD, care partners and care providers, the therapeutic landscape is promising, with various drug development programs underway following a targeted approach supported by disease-specific biomarkers and staging frameworks.


Subject(s)
Huntington Disease , Humans , Huntington Disease/therapy , Huntington Disease/genetics , Huntington Disease/drug therapy , Oligonucleotides, Antisense/therapeutic use , Huntingtin Protein/genetics , Animals , Drug Development
7.
Front Neurosci ; 18: 1394478, 2024.
Article in English | MEDLINE | ID: mdl-38903599

ABSTRACT

VPS13A disease and Huntington's disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated.

8.
FEBS J ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923676

ABSTRACT

Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.

9.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920658

ABSTRACT

The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.


Subject(s)
Cullin Proteins , Dendrites , Drosophila Proteins , Drosophila melanogaster , Animals , Cullin Proteins/metabolism , Cullin Proteins/genetics , Dendrites/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Larva/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubules/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction , Transcription Factors , Chaperonin Containing TCP-1
10.
Intern Med ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38897956

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurological disorder characterized by chorea, psychiatric symptoms, and cognitive decline but typically lacks muscular atrophy and weakness. We herein report a case of genetically confirmed HD showing progressive systemic weakness with findings of upper and lower motor neuron involvement due to amyotrophic lateral sclerosis (ALS). The current patient and the previously reported cases with complications of HD and ALS indicate that cytosine-adenine-guanine (CAG) repeat expansion in the huntingtin gene might have a pathogenic role in causing the two neurological disorders.

11.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38695673

ABSTRACT

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Subject(s)
Huntingtin Protein , Positron-Emission Tomography , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/chemistry , Ligands , Humans , Protein Aggregates/drug effects , Mutation , Huntington Disease/diagnostic imaging , Huntington Disease/metabolism , Huntington Disease/genetics , Radiopharmaceuticals/chemistry
12.
Neurobiol Dis ; 198: 106542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810948

ABSTRACT

A number of post-mortem studies conducted in transplanted Huntington's disease (HD) patients from various trials have reported the presence of pathological and misfolded proteins, in particular mutant huntingtin (mHtt) and phosphorylated tau neuropil threads, in the healthy grafted tissue. Here, we extended these observations with histological analysis of post-mortem tissue from three additional HD patients who had received similar striatal allografts from the fetal tissue transplantation trial conducted in Los Angeles in 1998. Immunohistochemical staining was performed using anti-mHtt antibodies, EM48 and MW7, as well as anti-hyperphosphorylated tau antibodies, AT8 and CP13. Immunofluorescence was used to assess the colocalization of EM48+ mHtt aggregates with the neuronal marker MAP2 and/or the extracellular matrix protein phosphacan in both the host and grafts. We confirmed the presence of mHtt aggregates within grafts of all three cases as well as tau neuropil threads in the grafts of two of the three transplanted HD patients. Phosphorylated tau was also variably expressed in the host cerebral cortex of all three subjects. While mHtt inclusions were present within neurons (immunofluorescence co-localization of MAP2 and EM48) as well as within the extracellular matrix of the host (immunofluorescence co-localization of phosphacan and EM48), their localization was limited to the extracellular matrix in the grafted tissue. This study corroborates previous findings that both mHtt and tau pathology can be found in the host and grafts of HD patients years post-grafting.


Subject(s)
Huntingtin Protein , Huntington Disease , Neurons , tau Proteins , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Huntington Disease/genetics , tau Proteins/metabolism , tau Proteins/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Male , Middle Aged , Female , Neurons/metabolism , Neurons/pathology , Adult , Fetal Tissue Transplantation/methods , Aged , Brain Tissue Transplantation/methods
13.
ACS Chem Neurosci ; 15(12): 2408-2419, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38752226

ABSTRACT

Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine stretch near the N-terminus of the huntingtin (HTT) protein, rendering the protein more prone to aggregate. The first 17 residues in HTT (Nt17) interact with lipid membranes and harbor multiple post-translational modifications (PTMs) that can modulate HTT conformation and aggregation. In this study, we used a combination of biophysical studies and molecular simulations to investigate the effect of PTMs on the helicity of Nt17 in the presence of various lipid membranes. We demonstrate that anionic lipids such as PI4P, PI(4,5)P2, and GM1 significantly enhance the helical structure of unmodified Nt17. This effect is attenuated by single acetylation events at K6, K9, or K15, whereas tri-acetylation at these sites abolishes Nt17-membrane interaction. Similarly, single phosphorylation at S13 and S16 decreased but did not abolish the POPG and PIP2-induced helicity, while dual phosphorylation at these sites markedly diminished Nt17 helicity, regardless of lipid composition. The helicity of Nt17 with phosphorylation at T3 is insensitive to the membrane environment. Oxidation at M8 variably affects membrane-induced helicity, highlighting a lipid-dependent modulation of the Nt17 structure. Altogether, our findings reveal differential effects of PTMs and crosstalks between PTMs on membrane interaction and conformation of HTT. Intriguingly, the effects of phosphorylation at T3 or single acetylation at K6, K9, and K15 on Nt17 conformation in the presence of certain membranes do not mirror that observed in the absence of membranes. Our studies provide novel insights into the complex relationship between Nt17 structure, PTMs, and membrane binding.


Subject(s)
Huntingtin Protein , Protein Processing, Post-Translational , Protein Processing, Post-Translational/physiology , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Humans , Phosphorylation/physiology , Acetylation , Cell Membrane/metabolism , Molecular Dynamics Simulation , Membrane Lipids/metabolism , Huntington Disease/metabolism
14.
J Huntingtons Dis ; 13(2): 201-214, 2024.
Article in English | MEDLINE | ID: mdl-38640164

ABSTRACT

Background: Huntington's disease is an inheritable autosomal dominant disorder caused by an expanded CAG trinucleotide repeat within the Huntingtin gene, leading to a polyglutamine (polyQ) expansion in the mutant protein. Objective: A potential therapeutic approach for delaying or preventing the onset of the disease involves enhancing the degradation of the aggregation-prone polyQ-expanded N-terminal mutant huntingtin (mHTT) exon1 fragment. A few proteases and peptidases have been identified that are able to cleave polyQ fragments with low efficiency. This study aims to identify a potent polyQ-degrading endopeptidase. Methods: Here we used quenched polyQ peptides to identify a polyQ-degrading endopeptidase. Next we investigated its role on HTT turnover, using purified polyQ-expanded HTT fragments and striatal cells expressing mHTT exon1 peptides. Results: We identified insulin-degrading enzyme (IDE) as a novel endopeptidase for degrading polyQ peptides. IDE was, however, ineffective in reducing purified polyQ-expanded HTT fragments. Similarly, in striatal cells expressing mHTT exon1 peptides, IDE did not enhance mHTT turnover. Conclusions: This study shows that despite IDE's efficiency in degrading polyQ peptides, it does not contribute to the direct degradation of polyQ-expanded mHTT fragments.


Subject(s)
Huntingtin Protein , Insulysin , Peptides , Insulysin/metabolism , Insulysin/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Peptides/metabolism , Humans , Animals , Huntington Disease/metabolism , Huntington Disease/genetics , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Corpus Striatum/metabolism
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612657

ABSTRACT

Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.


Subject(s)
Huntington Disease , Humans , Huntington Disease/genetics , Huntington Disease/therapy , Genetic Therapy , Mutant Proteins
16.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38589228

ABSTRACT

Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.


Subject(s)
Disease Models, Animal , Drosophila Proteins , Drosophila , Huntingtin Protein , Huntington Disease , Neuroglia , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Neuroglia/metabolism , Neuroglia/pathology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Female , Male , Phagocytosis/physiology , Lysosomes/metabolism , Phagosomes/metabolism , Animals, Genetically Modified , Prions/metabolism , Prions/genetics , Neurons/metabolism
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166928, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38660915

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive ß-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases ß-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.


Subject(s)
Copper , Huntingtin Protein , Huntington Disease , Animals , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Autophagy/drug effects , Autophagy/genetics , Brain/metabolism , Brain/pathology , Brain/drug effects , Copper/metabolism , Copper/toxicity , Disease Models, Animal , Drosophila melanogaster/drug effects , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Mutation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology
18.
Rev Neurol (Paris) ; 180(5): 357-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38614929

ABSTRACT

Huntington's disease is a dominantly inherited disorder characterized by the dysfunction and death of cortical and striatal neurons. Striatal degeneration in Huntington's disease is due, at least in part, to defective cortical signalling to the striatum. Although Huntington's disease generally manifests at the adult stage, mouse and neuroimaging studies of presymptomatic mutation carriers suggest that it may affect neurodevelopment. In support of this notion, the development of the cortex is altered in mice with Huntington's disease and the foetuses of human Huntington's disease gene carriers. We will discuss these studies and the contribution of abnormal brain development to the later appearance of the disease.


Subject(s)
Brain , Huntington Disease , Huntington Disease/genetics , Huntington Disease/pathology , Humans , Animals , Mice , Brain/pathology , Brain/diagnostic imaging , Disease Models, Animal , Huntingtin Protein/genetics
19.
Adv Sci (Weinh) ; 11(24): e2309217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38476051

ABSTRACT

Pathogenic huntingtin exon-1 protein (httex1), characterized by an expanded polyglutamine tract located between the N-terminal amphiphilic region and a C-terminal polyproline-rich domain, forms fibrils that accumulate in neuronal inclusion bodies, and is associated with a fatal, autosomal dominant neurodegenerative condition known as Huntington's disease. Here a complete kinetic model is described for aggregation/fibril formation of a httex1 construct with a 35-residue polyglutamine repeat, httex1Q35. Using exchange NMR spectroscopy, it is previously shown that the reversible formation of a sparsely-populated tetramer of the N-terminal amphiphilic domain of httex1Q35, comprising a D2 symmetric four-helix bundle, occurs on the microsecond time-scale and is a prerequisite for subsequent nucleation and fibril formation on a time scale that is many orders of magnitude slower (hours). Here a unified kinetic model of httex1Q35 aggregation is developed in which fast, reversible tetramerization is directly linked to slow irreversible fibril formation via conversion of pre-equilibrated tetrameric species to "active", chain elongation-capable nuclei by conformational re-arrangement with a finite, monomer-independent rate. The unified model permits global quantitative analysis of reversible tetramerization and irreversible fibril formation from a time series of 1H-15N correlation spectra recorded during the course of httex1Q35 aggregation.


Subject(s)
Huntingtin Protein , Huntington Disease , Huntingtin Protein/genetics , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Humans , Kinetics , Huntington Disease/metabolism , Huntington Disease/genetics , Protein Conformation , Protein Aggregates , Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Peptides/metabolism , Peptides/genetics
20.
J Huntingtons Dis ; 13(1): 41-53, 2024.
Article in English | MEDLINE | ID: mdl-38427495

ABSTRACT

Background: Mutations in the Huntingtin (HTT) gene cause Huntington's disease (HD), a neurodegenerative disorder. As a scaffold protein, HTT is involved in numerous cellular functions, but its normal and pathogenic functions during human forebrain development are poorly understood. Objective: To investigate the developmental component of HD, with a specific emphasis on understanding the functions of wild-type and mutant HTT alleles during forebrain neuron development in individuals carrying HD mutations. Methods: We used CRISPR/Cas9 gene-editing technology to disrupt the ATG region of the HTT gene via non-homologous end joining to produce mono- or biallelic HTT knock-out human induced pluripotent stem cell (iPSC) clones. Results: We showed that the loss of wild-type, mutant, or both HTT isoforms does not affect the pluripotency of iPSCs or their transition into neural cells. However, we observed that HTT loss causes division impairments in forebrain neuro-epithelial cells and alters maturation of striatal projection neurons (SPNs) particularly in the acquisition of DARPP32 expression, a key functional marker of SPNs. Finally, young post-mitotic neurons derived from HTT-/- human iPSCs display cellular dysfunctions observed in adult HD neurons. Conclusions: We described a novel collection of isogenic clones with mono- and biallelic HTT inactivation that complement existing HD-hiPSC isogenic series to explore HTT functions and test therapeutic strategies in particular HTT-lowering drugs. Characterizing neural and neuronal derivatives from human iPSCs of this collection, we show evidence that HTT loss or mutation has impacts on neuro-epithelial and striatal neurons maturation, and on basal DNA damage and BDNF axonal transport in post-mitotic neurons.


Subject(s)
Huntington Disease , Induced Pluripotent Stem Cells , Adult , Humans , Induced Pluripotent Stem Cells/metabolism , Huntington Disease/metabolism , Neurons/metabolism , Corpus Striatum/metabolism , Alleles , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...