Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2404426, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976554

ABSTRACT

Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.

2.
Environ Res ; 258: 119482, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914252

ABSTRACT

In this study, we studied the hydrocracking of waste chicken oil (WCO) catalyzed by mesoporous SO42-/KIT-6. The study included WCO extraction, SO42-/KIT-6 catalyst synthesis, hydrocracking, and catalytic characterization. XRD patterns revealed intense peaks in the low-angle region, with shoulder peaks showing an increase in sulphate loading from 10% to 30%. The BET-specific surface area for the pure KIT-6 supports measured at 1003 m2/g, indicative of a well-defined mesoporous structure. Thermogravimetric analysis (TGA) showed a two-stage weight loss, attributed to the elimination of hydrated water (about 200 °C) and decomposition of sulphate ions (400-450 °C). SEM analysis highlighted the surface morphology of the active SK-2 catalyst. Hydrocatalytic and catalytic cracking reactions were performed, and about 99.8% conversion was achieved with 20 mL/H H2 flow, whereas higher production of bioliquids was observed at a flow of 15 mL/h. The hydrocracking mechanism was also studied to understand the formation of lower hydrocarbons. GC analyses of simulated distilled gasoline, kerosene, and diesel showed diverse hydrocarbon compositions. For engine testing, non-hydrocracked fuel rose to 28 kW at 3000 rpm and declined to 21 kW at 3500 rpm. Emission analysis revealed decreasing trends in NOX emissions of hydrogen-rich blends, with values of 65 ppm, 54 ppm, and 48 ppm for petrol, NHBL, and HBL, respectively. Similarly, SO2 emissions reduced from petrol to NHBL and HBL at 910 ppm, 800 ppm, and 600 ppm, respectively, suggesting reduced environmental impact. CO emissions exhibited a substantial reduction in NHBL (0.90%) and HBL (0.54%) compared to petrol (2.70%), emphasizing the cleaner combustion characteristics. Our results provide a comprehensive exploration of waste chicken oil hydrocracking, emphasizing catalyst synthesis, fuel characterization, engine performance, and environmental impact, thereby contributing valuable insights to the field of sustainable bioenergy.

3.
Angew Chem Int Ed Engl ; 63(8): e202317594, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38183405

ABSTRACT

Hydrocracking catalysis is a key route to plastic waste upgrading, but the acid site-driven C-C cleavage step is relatively sluggish in conventional bifunctional catalysts, dramatically effecting the overall efficiency. We demonstrate here a facile and efficient way to boost the reactivity of acid sites by introducing Ce promoters into Pt/HY catalysts, thus achieving a better metal-acid balance. Remarkably, 100 % of low-density polyethylene (LDPE) can be converted with 80.9 % selectivity of liquid fuels over the obtained Pt/5Ce-HY catalysts at 300 °C in 2 h. For comparison, Pt/HY only gives 38.8 % of LDPE conversion with 21.3 % selectivity of liquid fuels. Through multiple experimental studies on the structure-performance relationship, the Ce species occupied in the supercage are identified as the actual active sites, which possess remarkably-improved adsorption capability towards short-chain intermediates.

4.
Angew Chem Int Ed Engl ; 63(6): e202312392, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38055209

ABSTRACT

For the first time, we report calculations of the free energies of activation of cracking and isomerization reactions of alkenes that combine several different electronic structure methods with molecular dynamics simulations. We demonstrate that the use of a high level of theory (here Random Phase Approximation-RPA) is necessary to bridge the gap between experimental and computed values. These transformations, catalyzed by zeolites and proceeding via cationic intermediates and transition states, are building blocks of many chemical transformations for valorization of long chain paraffins originating, e.g., from plastic waste, vegetable oils, Fischer-Tropsch waxes or crude oils. Compared with the free energy barriers computed at the PBE+D2 production level of theory via constrained ab initio molecular dynamics, the barriers computed at the RPA level by the application of Machine Learning thermodynamic Perturbation Theory (MLPT) show a significant decrease for isomerization reaction and an increase of a similar magnitude for cracking, yielding an unprecedented agreement with the results obtained by experiments and kinetic modeling.

5.
Angew Chem Int Ed Engl ; 63(6): e202314217, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37844013

ABSTRACT

Zeolites hold importance as catalysts and membranes across numerous industrial processes that produce most of the world's fuels and chemicals. In zeolite catalysis, the rate of molecular diffusion inside the micropore channels defines the catalyst's longevity and selectivity, thereby influencing the catalytic efficiency. Decreasing the diffusion pathlengths of zeolites to the nanoscopic level by fabricating well-organized hierarchically porous architecture can efficiently overcome their intrinsic mass-transfer limitations without losing hydrothermal stability. We report a rational post-synthetic design for synthesizing hierarchically ordered FAU-type zeolites exhibiting 2D-hexagonal (P6mm) and 3D-cubic (Ia 3 ‾ ${\bar{3}}$ d) mesopore channels. The synthesis involves methodical incision of the parent zeolite into unit-cell level zeolitic fragments by in situ generated base and bulky surfactants. The micellar ensembles formed by these surfactant-zeolite interactions are subsequently reorganized into various ordered mesophases by tuning the micellar curvature with ion-specific interactions (Hofmeister effect). Unlike conventional crystallization, which offers poor control over mesophase formation due to kinetic constraints, crystalline mesostructures can be developed under dilute, mild alkaline conditions by controlled reassembly. The prepared zeolites with nanometric diffusion pathlengths have demonstrated excellent yields of naphtha and middle-distillates in vacuum gas oil hydrocracking with decreased coke deposition.

6.
Chimia (Aarau) ; 77(12): 842-847, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131408

ABSTRACT

In this work, we looked at the most recent advances in the field of plastics hydrocracking from a technology standpoint. A patent search was supplemented by a literature review to evaluate the development of the hydrocracking technology for plastics recycling. We observed that the patent and academic literature output rapidly increased over the past decade, highlighting the recent emergence of this technology to tackle the plastic waste problem. A majority of patents arise from academia, where plastics recycling is a growing research topic. Although innovations for plastics hydrocracking have been reported, most of them disclose the use of catalysts in batch reactors, whereas very few patents describe the process. Continuous operation at pilot scale will be essential to gather process data towards industrialisation and further assess the commercial viability of theplastics hydrocracking technology.

7.
Angew Chem Int Ed Engl ; 62(40): e202305644, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37325872

ABSTRACT

Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO3 ) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200-250 °C with a liquid fuel (C5-18 ) formation rate up to 1456 gproducts ⋅ gmetal species -1 ⋅ h-1 . The reaction pathway over the bifunctional 2D Pt/WO3 is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO3 nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C-C cleavage on WO3 are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO3 catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.

8.
Sci Bull (Beijing) ; 68(5): 503-515, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36858839

ABSTRACT

Development of efficient catalysts with high atomic utilization and turnover frequency (TOF) for H2 activation in slurry phase hydrocracking (SPHC) is crucial for the conversion of vacuum residue (VR). Herein, for the first time, we reported a robust and stable single atoms (SAs) Mo catalyst through a polymerization-pyrolysis-in situ sulfurization strategy for activating H2 in SPHC of VR. An interesting atomic coordination structural dynamic evolution of Mo active sites was discovered. During hydrocracking of VR, the O atoms that coordinated with Mo were gradually replaced by S atoms, which led to the O/S exchange process. The coordination structure of the Mo SAs changed from pre-reaction Mo-O3S1 to post-reaction Mo-O1S3 coordination configurations, promoting the efficient homolytic cleavage activation of H2 into H radical species effectively. The evolved Mo SAs catalyst exhibited robust catalytic hydrogenation activity with the per pass conversion of VR of 65 wt%, product yield of liquid oils of 93 wt%, coke content of only 0.63 wt%, TOF calculated for total metals up to 0.35 s-1, and good cyclic stability. Theoretical calculation reveals that the significant variation of occupied Mo 4d states before and after H2 interaction has a direct bearing on the dynamic evolution of Mo SAs catalyst structure. The lower d-band center of Mo-O1S3 site indicates that atomic H diffusion is easy, which is conducive to catalytic hydrogenation. The finding of this study is of great significance to the development of high atom economy catalysts for the industrial application of heavy oil upgrading technology.

9.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432185

ABSTRACT

Pyrolysis and hydrocracking of plastic waste can produce valuable products with manageable effects on the environment as compared to landfilling and incineration. This research focused on the process simulation and life cycle assessment of the pyrolysis and hydrocracking of high-density polyethylene. Aspen Plus was used as the simulator and the Peng-Robinson thermodynamic model was employed as a fluid package. Additionally, sensitivity analysis was conducted in order to optimize product distribution. Based on the simulation, the hydrocracking process produced value-added fuels, i.e., gasoline and natural gas. In contrast, pyrolysis generated a significant quantity of pyrolysis oil with a high number of cyclo-compounds and char, which are the least important to be utilized as fuels. Moreover, in the later part of the study, life cycle assessment (LCA) was adopted in order to investigate and quantify their impact upon the environment using simulation inventory data, which facilitates finding a sustainable process. Simapro was used as a tool for LCA of the processes and materials used. The results demonstrate that hydrocracking is a better process in terms of environmental impact in 10 out of the 11 impact categories. Overall, the present study proposed a promising comparison based on energy demands, product distribution, and potential environmental impacts, which will help to improve plastic waste management.


Subject(s)
Plastics , Waste Management , Animals , Pyrolysis , Waste Management/methods , Incineration , Life Cycle Stages
10.
Materials (Basel) ; 15(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36233927

ABSTRACT

The upgrading of plant-based oils to liquid transportation fuels through the hydrotreating process has become the most attractive and promising technical pathway for producing biofuels. This work produced bio-jet fuel (C9-C14 hydrocarbons) from palm olein oil through hydrocracking over varied metal phosphide supported on porous biochar catalysts. Relative metal phosphide catalysts were investigated for the highest performance for bio-jet fuel production. The palm oil's fiber-derived porous biochar (PFC) revealed its high potential as a catalyst supporter. A series of PFC-supported cobalt, nickel, iron, and molybdenum metal phosphides (Co-P/PFC, Ni-P/PFC, Fe-P/PFC, and Mo-P/PFC) catalysts with a metal-loading content of 10 wt.% were synthesized by wet-impregnation and a reduction process. The performance of the prepared catalysts was tested for palm oil hydrocracking in a trickle-bed continuous flow reactor under fixed conditions; a reaction temperature of 420 °C, LHSV of 1 h-1, and H2 pressure of 50 bar was found. The Fe-P/PFC catalyst represented the highest hydrocracking performance based on 100% conversion with 94.6% bio-jet selectivity due to its higher active phase dispersion along with high acidity, which is higher than other synthesized catalysts. Moreover, the Fe-P/PFC catalyst was found to be the most selective to C9 (35.4%) and C10 (37.6%) hydrocarbons.

11.
R Soc Open Sci ; 9(3): 211353, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35308628

ABSTRACT

Sulfided nickel, an established hydrocracking and hydrotreating catalyst for hydrocarbon refining, was synthesized on porous aluminosilicate supports for the hydrocracking of mixed polyolefin waste. Zeolite beta, zeolite 13X, MCM41 and an amorphous silica-alumina catalyst support were impregnated with the single-source precursor (SSP) nickel (II) ethylxanthate for catalyst support screening. Application of this synthesis method to beta-supported nickel (Ni@Beta), as an alternative to wet impregnation using aqueous nickel (II) nitrate, provided catalytic materials with higher conversion to fluid products at the same mild batch reaction conditions of 330°C with appropriate agitation and 20 bar H2 pressure. Mass balance quantification demonstrated that SSP-derived 5wt%Ni@Beta yielded a greater than 95 wt% conversion of a mixed polyolefin feed to fluid products, compared with 39.8 wt% conversion in the case of 5wt%Ni@Beta prepared by wet impregnation. Liquid and gas products were quantitatively analysed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS), revealing a strong selectivity to saturated C4 (37.3 wt%), C5 (21.6 wt%) and C6 (12.8 wt%) hydrocarbons in the case of the SSP-derived catalyst.

12.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885761

ABSTRACT

The Fischer-Tropsch heavy fraction is a potential feedstock for transport-fuels production through co-processing with fossil fuel fraction. However, there is still the need of developing new and green catalytic materials able to process this feedstock into valuable outputs. The present work studies the co-hydrocracking of the Fisher-Tropsch heavy fraction (FT-res.) with vacuum gas oil (VGO) at different ratios (FT-res. 9:1 VGO, FT-res. 7:3 VGO, and FT-res. 5:5 VGO) using phonolite-based catalysts (5Ni10W/Ph, 5Ni10Mo/Ph, and 5Co10Mo/Ph), paying attention to the overall conversion, yield, and selectivity of the products and properties. The co-processing experiments were carried out in an autoclave reactor at 450 °C, under 50 bars for 1 and 2 h. The phonolite-based catalysts were active in the hydrocracking of FT-res.:VGO mixtures, presenting different yields to gasoline, diesel, and jet fuel fractions, depending on the time of reaction and type of catalyst. Our results enable us to define the most suitable metal transition composition for the phonolite-based support as a hydrocracking catalyst.

13.
Waste Manag ; 128: 36-44, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33962155

ABSTRACT

The pyrolysis of scrap tires is a very attractive strategy to valorize chemically these end-of-life wastes. The products of this step and any additional one, such as hydrotreating, are relatively complex in nature entangling the understanding and limiting the viability. In this work, we have investigated in detail the composition of a tire pyrolysis oil blended with light cycle oil (from a refinery) and its hydrotreated products using a bifunctional NiW/HY catalyst at 320-400 °C. We have applied a set of analytical techniques to assess the composition, namely simulated distillation, ICP, GC/FID-PFPD, GC × GC/MS, and APPI FT-ICR/MS. Our results show the strength of our analytical workflow to highlight the compositional similarities of this pyrolysis oil with the standard refinery streams. The main differences arise from the higher boiling point species (originated during the pyrolysis of tires) and relatively high concentration of oxygenates. These effects can be minimized by hydrotreating the feed which effectively removes heteroatomic compounds from the feed while boosting the quantity and quality of gasoline and diesel fractions.


Subject(s)
Photoperiod , Pyrolysis , Catalysis , Gas Chromatography-Mass Spectrometry , Gasoline/analysis
14.
Materials (Basel) ; 14(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671647

ABSTRACT

Zeolites are widely used in high-temperature oil refining processes such as fluid catalytic cracking (FCC), hydrocracking, and aromatization. Significant energy cost are associated with these processes due to the high temperatures required. The induction heating promoted by magnetic nanoparticles (MNPs) under radio frequency fields could contribute to solving this problem by providing a supplementary amount of heat in a nano-localized way, just at the active centre site where the catalytic process takes place. In this study, the potential of such a complementary route to reducing energetic requirements is evaluated. The catalytic cracking reaction under a hydrogen atmosphere (hydrocracking) applied to the conversion of plastics was taken as an application example. Thus, a commercial zeolite catalyst (H-USY) was impregnated with three different magnetic nanoparticles: nickel (Ni), cobalt (Co), maghemite (γ-Fe2O3), and their combinations and subjected to electromagnetic fields. Temperature increases of approximately 80 °C were measured for H-USY zeolite impregnated with γ-Fe2O3 and Ni-γ-Fe2O3 due to the heat released under the radio frequency fields. The potential of the resulting MNPs derived catalyst for HDPE (high-density polyethylene) conversion was also evaluated by thermogravimetric analysis (TGA) under hydrogen atmosphere. This study is a proof of concept to show that induction heating could be used in combination with traditional resistive heating as an additional energy supplier, thereby providing an interesting alternative in line with a greener technology.

15.
MethodsX ; 7: 101128, 2020.
Article in English | MEDLINE | ID: mdl-33224738

ABSTRACT

In this research work, analytical, experimental methods and monitoring techniques of bio-hydrogenated kerosene (BHK) production in continuous mode were presented. Two kinds of raw materials obtained from palm processing plant named as refined bleached deodorised palm oil (RPO) and palm kernel oil (PKO) were converted into BHK via hydrocracking reaction catalysed by Pd/Al2O3 catalyst in pilot scale. Firstly, both of RPO and PKO were pretreated by thermal technique. Subsequently, fatty acid compositions of palm oils were analysed by Gas Chromatography (GC). Then, hydrocracking reaction of RPO and PKO were separately conducted in continuous high pressure packed bed reactor (HPPBR). After reaction, crude-biofuel was refined into BHK via fractional distillation. In addition, some properties of BHK obtained from RPO/PKO such as were C, H, O elements, freezing point, flash points, total acid number and carbon distribution were analysed following the ASTM and UOP 915 standards.•Thermal pretreatment of refined bleached deoderised palm oil (RPO) and palm kernel oil (PKO).•Continuous hydrocracking reaction of palm oil was conducted in pilot scale.•Characterisation of bio-hydrogenated kerosene obtained from palm oil.

16.
Front Chem ; 7: 705, 2019.
Article in English | MEDLINE | ID: mdl-31737595

ABSTRACT

Citric acid-treated zeolite Y (CY) and zeolite beta were mechanically mixed to obtain composite zeolites (CY-Beta) with various zeolite beta contents. The composite zeolites were used as the acid components of hydrocracking catalyst supports. The physical and chemical properties of the supports and catalysts were analyzed by N2 adsorption-desorption, XRD, SEM, and NH3-TPD. The mechanical mixing of CY and zeolite beta does not destroy the textual properties of the original zeolites. However, the acidity of the composite zeolite does not fit the linearly calculated value of the two zeolites because some of the acid sites are covered or reacted with other acid sites during the mixing process. In addition, weak acid sites favor the high yield of tail oil with low BMCI value. Compared with the CY-based and beta-based catalysts, the conversion and light oil yield of the CY-Beta-based catalyst was increased. The conversion, light oil yield, and petrochemical yield of the Ni-W/20CY-Beta(20)/ASA catalyst are 78.15, 65.0, and 83.7%, respectively. The BMCI value of the tail oil is 4.7, and the aromatic potential content (APC) of heavy naphtha (boiling point 65-177°C) is 42%. The 1,500 h pilot plant test of Ni-W/20CY-Beta(20)/ASA at 350°C, 7.0 MPa, 2.0 h-1 LHSV, and 800 H2/oil (v/v) shows that the activity remains stable during the 1,500 h evaluation. The heavy naphtha (APC about 41.0) yield of 41.2 illustrates that the catalyst has the ability to aromatize and cyclize the light fractions. The yield of diesel is about 25% with a cetane index (CI) of 59.2; the frozen point is lower than -45°C, and the cold filter plugging point is -35°C, demonstrating the isomerization performance for middle distillations. The yield of tail oil is 14.9% with a BMCI of 4.4, showing the high hydrogenation performance of the catalyst to transform the un-cracked tail oil to saturated hydrocarbon in order to reduce the BMCI value.

17.
Bioresour Technol ; 243: 100-106, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28651130

ABSTRACT

In this study, a novel catalyst, S2O82--KNO3/TiO2, which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S2O82--KNO3/TiO2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions.


Subject(s)
Catalysis , Lignin , Hydrogenation , Solvents
18.
Bioresour Technol ; 212: 302-310, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27123643

ABSTRACT

Catalytic hydrocracking of kraft lignin was carried out in isopropanol system and an orthogonal array design (OAD) was employed to optimize the experimental conditions. GC-MS/FID, elemental analysis, GPC and (1)H-(13)C HSQC NMR were carried out for entire investigation of the liquid products. The results indicated that the hydrocracking process was thermally controlled and catalysts showed significant influences on the product distributions. Comparing with Pd/C, Pt/C and Ru/C, Rh/C inhibited the self-condensation of isopropanol and reduced the formation of oxygenic-chain compounds. The excellent catalytic activity for phenols conversion was obtained over Rh/C. The routes of oxygenic-chain compounds formation and phenol conversion were proposed in detail. The least oxygenic-chain compounds formation, the highest phenols conversion (93.4%), the lowest O/C ratio (0.094) and the highest HHV (37.969MJ/kg) provided the possibility of the high quality bio-oil obtained over Rh/C in isopropanol medium.


Subject(s)
2-Propanol/chemistry , Biofuels , Lignin/chemistry , Carbon/chemistry , Catalysis , Gas Chromatography-Mass Spectrometry , Hot Temperature , Magnetic Resonance Spectroscopy/methods , Palladium/chemistry , Phenols/chemistry , Ruthenium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL