Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Environ Sci Technol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136409

ABSTRACT

Previous studies along the banks of the tidal Meghna River of the Ganges-Brahmaputra-Meghna Delta demonstrated the active sequestration of dissolved arsenic (As) on newly formed iron oxide minerals (Fe(III)-oxides) within riverbank sands. The sand with high solid-phase As (>500 mg/kg) was located within the intertidal zone where robust mixing occurs with oxygen-rich river water. Here we present new evidence that upwelling groundwater through a buried silt layer generates the dissolved products of reductive dissolution of Fe(III)-oxides, including As, while mobilization of DOC by upwelling groundwater prevents their reconstitution in the intertidal zone by lowering the redox state. A three end-member conservative mixing model demonstrated mixing between riverbank groundwater above the silt layer, upwelling groundwater through the silt layer, and river water. An electrochemical mass balance model confirmed that Fe(III)-oxides were the primary electron acceptor driving the oxidation of DOC sourced from sediment organic carbon in the silt. Thus, the presence of an intercalating silt layer in the riverbanks of tidal rivers can represent a biogeochemical hotspot of As release while preventing its retention in the hyporheic zone.

2.
Sci Total Environ ; 945: 174145, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38909795

ABSTRACT

The coexistence of hexavalent chromium (Cr(VI)) and nitrate (NO3-) in groundwater and surface water presents a considerable challenge for the natural attenuation of these two contaminants because their interactions in nature remain contentious. This study investigated the interplay between Cr(VI) and NO3- in hyporheic zone (HZ) sediments by integrating Cr(VI) reduction kinetics, NO3- transformation, microbial community structure, and a three-rate model. The concurrent natural attenuation of Cr(VI) and NO3- in the sediments was significantly influenced by their initial concentrations and redox conditions. The reduction of low concentrations of Cr(VI) (37.1 and 96.2 µM) was slightly enhanced by NO3-, while inhibitory effects were observed at high concentrations of Cr(VI) (200.0 µM). However, except for an initial low concentration of Cr(VI) (37.1 µM) and NO3- (450 µM), the reduction of NO3- was adversely affected by Cr(VI). The reduction rates and efficiencies of Cr(VI) and NO3- were noticeably lower under aerobic conditions than under anaerobic conditions. This phenomenon can be attributed to the presence of O2, which decreased the selectivity of sediments-associated Fe(II) towards Cr(VI) and NO3- and induced alterations in the microbial community structure, leading to subsequent changes in NO3- transformation. Furthermore, the three-rate model represents a robust approach for elucidating the reduction of Cr(VI) in the presence of co-contaminants, such as NO3- contamination under diverse redox conditions. This study provides further insights into the interaction mechanism between Cr(VI) and NO3- within the HZ, necessitating the consideration of the microbial toxicity of Cr(VI) and electron competition among Cr(VI), NO3-, and O2.

3.
J Hazard Mater ; 473: 134538, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761759

ABSTRACT

Both sediments and microplastics (MPs) are medias of heavy metals (HMs) in river ecosystems. This study investigated HMs (Mn, Cr, V, As, Cu, Co, Cd, Pb, and Ni) concentration and driving factors for competitive enrichment between hyporheic sediments versus MPs. The medias basic characteristics indicated that the sediments were mostly sand and rich in Fe2O3; three polymer types were identified, with blue, fragment, less than 500 µm being the main types of MPs. The results have shown that the average content of extracted HMs in MPs was much higher than that of the same metals accumulated in sediments. HMs in sediments and MPs reached heavily polluted at some points, among which As and Cd were ecological risks. Electrostatic adsorption and surface complexation, and biofilm-mediated and organic matter complexation were the interaction mechanism of HMs with sediments and MPs. Further, the driving factors affecting the distribution of HMs in the two carriers were analyzed by multivariate statistical analysis. The results demonstrated that carrier characteristics, hydrochemical factors, and the inherent metal load of MPs were the main causes of the high HMs content. These findings improved our understanding of HMs fate and environmental risks across multiple medias.

4.
J Environ Manage ; 357: 120627, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565034

ABSTRACT

Serving as a vital linkage between surface water and groundwater, the hyporheic zone (HZ) plays a fundamental role in improving water quality and maintaining ecological security. In arid or semi-arid areas, effluent discharge from wastewater treatment facilities could occupy a predominant proportion of the total base flow of receiving rivers. Nonetheless the relationship between microbial activity, abundance and environmental factors in the HZ of effluent-receiving rivers appear to be rarely addressed. In this study, a spatiotemporal field study was performed in two representative effluent-dominated receiving rivers in Xi'an, China. Land use data, physical and chemical water quality parameters of surface and subsurface water were used as predictive variables, while the microbial respiratory electron transport system activity (ETSA), the Chao1 and Shannon index of total microbial community, as well as the Chao1 and Shannon index of denitrifying bacteria community were used as response variables, while ETSA was used as response variables indicating ecological processes and Shannon and Chao1 were utilized as parameters indicating microbial diversity. Two machine learning models were utilized to provide evidence-based information on how environmental factors interact and drive microbial activity and abundance in the HZ at variable depths. The models with Chao1 and Shannon as response variables exhibited excellent predictive performances (R2: 0.754-0.81 and 0.783-0.839). Dissolved organic nitrogen (DON) was the most important factor affecting the microbial functions, and an obvious threshold value of ∼2 mg/L was observed. Credible predictions of models with Chao1 and Shannon index of denitrifying bacteria community as response variables were detected (R2: 0.484-0.624 and 0.567-0.638), with soluble reactive phosphorus (SRP) being the key influencing factor. Fe (Ⅱ) was favorable in predicting denitrifying bacteria community. The ESTA model highlighted the importance of total nitrogen in the ecological health monitoring in HZ. These findings provide novel insights in predicting microbial activity and abundance in highly-impacted areas such as the HZ of effluent-dominated receiving rivers.


Subject(s)
Microbiota , Rivers , Rivers/microbiology , Wastewater , Bacteria , Water Quality
5.
Microbiol Resour Announc ; 13(6): e0003324, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38651910

ABSTRACT

Rivers are critical ecosystems that impact global biogeochemical cycles. Nonetheless, a mechanistic understanding of river microbial metabolisms and their influences on geochemistry is lacking. Here, we announce metaproteomes of river sediments that are paired with metagenomes and metabolites, enabling an understanding of the microbial underpinnings of river respiration.

6.
Environ Sci Pollut Res Int ; 31(17): 26315-26319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519616

ABSTRACT

Hyporheic water exchange driven by groundwater-surface water interactions constitutes habitat conditions for aquatic biota. In our study, we conducted a field-research-based analysis of hyporheic water exchange to reveal whether the hyporheic water exchange differentiates particular Ranunculus sp. habitats. We measured the density of the stream of upwelling and hydraulic gradients of water residing in the hyporheic zone in 19 Polish rivers. We revealed that R. peltatus and R. penicillatus persist in habitats of considerably higher hyporheic water exchange upwelling flux (respectively 0.0852 m3∙d-1∙m-2 and 0.0952 m3∙d-1∙m-2) than R. circinatus, R. fluitans, and a hybrid of R. circinatus × R. fluitans (respectively m3∙d-1∙m-2; 0.0222 m3∙d-1∙m-2 and 0.0717 m3∙d-1∙m-2). The presented results can be used to indicate aquatic habitat suitability in the case of protection and management of ecosystems settled by Ranunculus sp.


Subject(s)
Groundwater , Ranunculus , Ecosystem , Water , Poland , Water Movements
7.
Sci Total Environ ; 918: 170587, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309342

ABSTRACT

Biogeochemical hot spots play a crucial role in the cycling and transport of redox-sensitive elements (RSEs) in the hyporheic zone (HZ). However, the transformation mechanisms of RSEs and patterns of RSEs hot spots in the HZ remain poorly understood. In this study, hydrochemistry and multi-isotope (N/C/S/O) datasets were collected to investigate the transformation mechanisms of RSEs, and explore the distribution characteristics of RSEs transformation hot spots. The results showed that spatial variability in key drivers was evident, while temporal change in RSEs concentration was not significant, except for dissolved organic carbon. Bacterial sulfate reduction (BSR) was the primary biogeochemical process for sulfate and occurred throughout the area. Ammonium enrichment was mainly caused by the mineralization of nitrogenous organic matter and anthropogenic inputs, with adsorption serving as the primary attenuation mechanism. Carbon dynamics were influenced by various biogeochemical processes, with dissolved organic carbon mainly derived from C3 plants and dissolved inorganic carbon from weathering of carbonate rocks and decomposition of organic matter. The peak contribution of dissolved organic carbon decomposition to the DIC pool was 46.44 %. The concentration thresholds for the ammonium enrichment and BSR hot spots were identified as 1.5 mg/L and 8.84 mg/L, respectively. The distribution pattern of RSEs hot spots was closely related to the hydrogeological conditions. Our findings reveal the complex evolution mechanisms and hot spots distribution characteristics of RSEs in the HZ, providing a basis for the safe utilization and protection of groundwater resources.

8.
Sci Rep ; 14(1): 3954, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368500

ABSTRACT

This study investigates the impact of water levels and soil texture on the migration and transformation of nitrate (NO3--N) and ammonium (NH4+-N) within a soil column. The concentrations of NO3--N gradually decreased from an initial concentration of 34.19 ± 0.86 mg/L to 14.33 ± 0.77 mg/L on day 70, exhibiting fluctuations and migration influenced by water levels and soil texture. Higher water levels were associated with decreased NO3--N concentrations, while lower water levels resulted in increased concentrations. The retention and absorption capacity for NO3--N were highest in fine sand soil, followed by medium sand and coarse sand, highlighting the significance of soil texture in nitrate movement and retention. The analysis of variance (ANOVA) confirmed statistically significant variations in pH, dissolve oxygen and oxidation-reduction potential across the soil columns (p < 0.05). Fluctuating water levels influenced the migration and transformation of NO3--N, with distinct patterns observed in different soil textures. Water level fluctuations also impacted the migration and transformation of NH4+-N, with higher water levels associated with increased concentrations and lower water levels resulting in decreased concentrations. Among the soil types considered, medium sand exhibited the highest absorption capacity for NH4+-N. These findings underscore the significant roles of water levels, soil texture, and soil type in the migration, transformation, and absorption of nitrogen compounds within soil columns. The results contribute to a better understanding of nitrogen dynamics under varying water levels and environmental conditions, providing valuable insights into the patterns of nitrogen migration and transformation in small-scale soil column experiments.

9.
Appl Environ Microbiol ; 90(3): e0198723, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38391193

ABSTRACT

Streams impacted by historic mining activity are characterized by acidic pH, unique microbial communities, and abundant metal-oxide precipitation, all of which can influence groundwater-surface water exchange. We investigate how metal-oxide precipitates and hyporheic mixing mediate the composition of microbial communities in two streams receiving acid-rock and mine drainage near Silverton, Colorado, USA. A large, neutral pH hyporheic zone facilitated the precipitation of metal particles/colloids in hyporheic porewaters. A small, low pH hyporheic zone, limited by the presence of a low-permeability, iron-oxyhydroxide layer known as ferricrete, led to the formation of steep geochemical gradients and high dissolved-metal concentrations. To determine how these two hyporheic systems influence microbiome composition, we installed well clusters and deployed in situ microcosms in each stream to sample porewaters and sediments for 16S rRNA gene sequencing. Results indicated that distinct hydrogeochemical conditions were present above and below the ferricrete in the low pH system. A positive feedback loop may be present in the low pH stream where microbially mediated precipitation of iron-oxides contributes to additional clogging of hyporheic pore spaces, separating abundant, iron-oxidizing bacteria (Gallionella spp.) above the ferricrete from rare, low-abundance bacteria below the ferricrete. Metal precipitates and colloids that formed in the neutral pH hyporheic zone were associated with a more diverse phylogenetic community of nonmotile, nutrient-cycling bacteria that may be transported through hyporheic pore spaces. In summary, biogeochemical conditions influence, and are influenced by, hyporheic mixing, which mediates the distribution of micro-organisms and, thus, the cycling of metals in streams receiving acid-rock and mine drainage. IMPORTANCE: In streams receiving acid-rock and mine drainage, the abundant precipitation of iron minerals can alter how groundwater and surface water mix along streams (in what is known as the "hyporheic zone") and may shape the distribution of microbial communities. The findings presented here suggest that neutral pH streams with large, well-mixed hyporheic zones may harbor and transport diverse microorganisms attached to particles/colloids through hyporheic pore spaces. In acidic streams where metal oxides clog pore spaces and limit hyporheic exchange, iron-oxidizing bacteria may dominate and phylogenetic diversity becomes low. The abundance of iron-oxidizing bacteria in acid mine drainage streams has the potential to contribute to additional clogging of hyporheic pore spaces and the accumulation of toxic metals in the hyporheic zone. This research highlights the dynamic interplay between hydrology, geochemistry, and microbiology at the groundwater-surface water interface of acid mine drainage streams.


Subject(s)
Iron , Microbiota , Phylogeny , RNA, Ribosomal, 16S/genetics , Oxides , Metals , Bacteria/genetics , Water/chemistry , Colloids
10.
Water Res ; 251: 121190, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38281336

ABSTRACT

We lack a clear understanding of how anthropogenic pressures, exemplified by effluent discharge from wastewater treatment plants, destabilize microbial communities in the hyporheic zone (HZ) of receiving rivers. In this study, the spatiotemporal characteristics of hydrological parameters, and the physicochemical properties of surface and subsurface water in a representative effluent-dominated river were monitored. Sequencing of 16S rRNA amplicons and metagenomes revealed the microbial community structure in the HZ of both effluent discharge area and downstream region. The keystone taxa (taxa vital in determining the composition of each microbial cluster) and the keystone functions they controlled were subsequently identified. Effluent discharge amplified the depth of the oxic/suboxic zone and the hyporheic exchange fluxes in the effluent discharge area, which was 50-120% and 40-300% higher than in the downstream region, respectively. Microbial community structure pattern analysis demonstrated an enhancement in the rate of dispersal, an increase in microbial diversity, and an improved community network complexity in the effluent discharge area. By contrast, the number of keystone taxa in the effluent discharge area was 50-70% lower than that of the downstream region, resulting in reduced community network stability and functionality. The keystone taxa controlling metabolic functions in the networks categorized to effluent discharge area were comprised of more genera related to nitrogen and sulfur cycling, e.g., Dechloromonas, Desulfobacter, Flavobacterium, Nitrosomonas, etc., highlighting a research need in monitoring species associated with nutrient element cycling in the HZ of receiving waterbodies. The results showed that the keystone taxa could contribute positively to network stability, which was negatively correlated to hyporheic exchange fluxes and redox gradients. This study provides valuable insights that will improve our understanding of how river ecosystems respond to changes in anthropogenic pressures.


Subject(s)
Microbiota , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Rivers/chemistry
11.
Sci Total Environ ; 915: 170070, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38218484

ABSTRACT

The coupled N and S cycling in variable redox gradients in the hyporheic zone (HZ) of the rivers receiving effluents from wastewater treatment plants is unclear. Using two representative effluent-dominated rivers as model systems, a metagenome approach was employed to explore the spatiotemporal redox zonation of the HZ and the N/S cycling processes within the system. The results manifested that nitrate reduction represented the fundamental nitrogen pathway in the HZ. Interestingly, DNRA coupled with sulfur reduction, and denitrification coupled with sulfur oxidation were respectively abundant in the oxic and anoxic zone. Lower nitrate concentration (0-2.72 mg-N/L) and more abundant genes involved in denitrification (napB, NarGHI) and sulfur oxidation (sseA, glpE) were detected in the anoxic zone. Contrarily, the nitrate concentration (0.07-4.87 mg-N/L) and the abundance of genes involved in sulfur reduction (ttrB, sudA) and DNRA (nirBD) were observed more abundant in the oxic zone. Therefore, the results verified the oxygen-limited condition did not suppress but rather facilitated the denitrification process in the presence of active S cycling. The high relative abundances of nosZ gene encoding sequence (3-5 % relative to all nitrogen-cycling processes) in both the effluent-discharging area and downstream area highly confirmed that HZ was capable of alleviating the N2O emission in the region. The functional keystone taxa were revealed through co-occurrence network analysis. The structural equation model shows that the genes of N/S cycling were positively impacted by functional keystone taxa, especially the N cycling genes. Functional keystone taxa were proven driven by the redox gradient, demonstrating their positive roles in mediating N/S cycling processes. The promoting effect on nitrate reduction coupled with sulfur cycling was clarified when redox conditions oscillated, providing a new perspective on mitigating nitrogen pollution and greenhouse gas emissions in effluent-receiving rivers.


Subject(s)
Denitrification , Nitrates , Nitrates/metabolism , Nitrogen/metabolism , Organic Chemicals , Sulfur/metabolism , Oxidation-Reduction
12.
J Environ Manage ; 351: 119728, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086122

ABSTRACT

The interaction between groundwater and surface water, including their recharge relationship and ratio, is crucial for water cycling, management, and pollution control. However, accurately estimating their spatiotemporal interaction at the watershed scale remains challenging. In this study, we used dual stable isotopes (δ18O, δ2H, d-excess, and lc-excess) and hydrochemistry methods to rethink spatiotemporal interaction at the Yiluo River watershed in central China. We collected 20 groundwater and 40 surface water samples over four periods in two seasons (dry and wet). Our results showed that in the downstream region, groundwater recharged surface water in the dry season while surface water recharged groundwater in the wet season, with average recharge ratios of 89.82% and 90.02%, respectively. In the midstream region, surface water recharged groundwater in both seasons with average ratios of 93.79% and 91.35%. In contrast, in the upstream region, groundwater recharged surface water in both seasons with ratios of 67.35% and 76.89%. Seasonal changes in the recharge relationship between surface water and groundwater in the downstream region also been found. Our findings provide valuable insights for watershed-scale water resource and pollution management.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water , Environmental Monitoring/methods , Isotopes , Rivers , China , Water Pollutants, Chemical/analysis
13.
Environ Technol ; : 1-14, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37970958

ABSTRACT

ABSTRACTIt is unknown how antibiotics would behave after entering the hyporheic zone (HZ), which is an area where groundwater and surface water alternate continuously. In this study, the hydrolysis process in the HZ was investigated based on the intermediates identified by HPLC-Q-TOF-MS and FTIR, and the active sites of sulfamethoxazole (SMX) were predicted by density functional theory (DFT). The results showed that the hydrolysis rate of SMX during surface water recharged groundwater reached 38.94%, and the contribution rate of hydroxyl radicals reached 48.35%. In neutral and alkaline environments, SMX hydrolysed more quickly. This is due to the fact that ·OH, as the main precursor of OH-, is much higher in quantity under alkaline conditions. Inorganic anions such as NO3-, HCO3- and CO32- may inhibit the hydrolysis of SMX by eliminating the reactive oxygen species generated in the HZ. In the process of groundwater recharging to surface water, the concentration of dissolved oxygen (DO) and the rate of SMX hydrolysis gradually reduced. Nitrification, hydroxylation and polymerisation are the main hydrolysis pathways of SMX. The hydrolysis products of SMX in the HZ are more plentiful and have a higher hydrolysis rate compared to the single oxygen environment. The study on the hydrolysis mechanism of SMX in this paper will provide a theoretical basis for the treatment of antibiotic pollution.

14.
Sci Total Environ ; 904: 167256, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37741401

ABSTRACT

Several studies focused on the role of rivers as vectors of microplastics (MPs) towards the sea. It is well known that during their path through the fluvial environment, MPs interact with riverbed sediments; however, the main factors impacting the mobility of MPs within the upper part of the hyporheic zone are not clear yet. The present work investigates the role of different sediment size layers in affecting the mobility of the most common MP (Polyethylene terephthalate - PET - spheres, PET 3D-ellipsoids, polystyrene - PS - fragments and polyamide - PA - fibers) within sediment porous media under different hydraulic loads (HL) and time scales (t) conditions. Results indicated the relationship between the characteristic MP diameter and that of the grains as the main parameter for the MP infiltration into the sediment layer. The maximum infiltration depth was found to not depend on HL and t. However, HL was able to influence the percentage of MPs penetrating the superficial layer and their distribution within the first 10-15 cm of the sediment layer. None of the MPs were found at depths >20-25 cm, where only PET spheres were detected. Starting from the suffusion theory, a model able to predict the MP maximum infiltration depth in the range of parameter values was provided. The outcome indicates the importance of considering geometrical and hydrodynamic aspects of the riverbed sediment layer to better characterize the spatial and temporal scales of MP transport in freshwater environments.

15.
Water Res ; 245: 120645, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37769420

ABSTRACT

Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.


Subject(s)
Endocrine Disruptors , Groundwater , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Water , China , Endocrine Disruptors/analysis , Environmental Monitoring
16.
Sci Total Environ ; 902: 166532, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37625732

ABSTRACT

Exchange between groundwater (GW) and surface water (SW) is a common occurrence in karst water systems through sinking stream disappearance or groundwater emergence. However, the transitory GW-SW interaction caused by river backflowing into a spring is poorly observed and understood. In this study, we present an approach for characterizing the influence of GW-SW interaction in a karst spring by integrating high-resolution hydrology, carefully selected hydrochemistry monitoring and precise microbe measurements. The spring-fed pool water conditions can be distinguished as high, medium, and low-water level periods in a hydrological year. The high-water level accounts for <1 % in a year, while it is associated with the hydrological regimes of backflooding states. The inflow of river backflow was found to be 4.4 times that of the natural discharge of spring water during a rainfall event. The duration of river intrusion into the spring or karst conduit could be assessed by jointly interpreting hydrography and physicochemical signatures, while the lasting environmental consequences should be evaluated together with biotic factors such as Escherichia coli. The GW-SW interaction induced by river backflow has led to the retention of river water in a pool, spring, and karst conduit for 132, 94, and 56 h, respectively. Despite turbidity returning to normal levels after 56 h, E.coli continued to persist for an extended duration. Our study reveals that despite the transient nature of GW-SW induced by river backflow on the hydrograph, they present a lasting risk of contamination from heavy metals, organic matter, and microorganisms. This extended influence can persist within a karst aquifer lacking a hyporheic zone. This research contributes to the quantification of processes involved in transitory GW-SW interaction in a karst spring, and it highlights the underestimation of GW-SW interactions in karst water systems, which might negatively impact water resources management.

17.
Environ Pollut ; 334: 122202, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37453683

ABSTRACT

Porewater arsenic mobility above the groundwater table has been recognized as a potential cause of arsenic-rich groundwater, but the processing pathways of dissolved organic matter (DOM) in that hyporheic zone and their effect on porewater arsenic release remain poorly understood. To address these issues, two porewater profiles were sampled in a surface water-groundwater interaction zone from the Hetao Basin, China, to monitor the porewater geochemistry and DOM molecular characteristics. The results show that the porewater arsenic, Fe(II), and DOC concentrations were all significantly higher than those of the intruding pond water, and were located above the conservative mixing model lines. This indicates a net release of these solutes from the sediment. By comparing the porewater with pond water DOM, we found that the carboxyl-rich alicyclic molecules (CRAM) were selectively preserved, carbohydrates and aliphatics/proteins were preferentially consumed, and low O/C-ratio compounds with high bioproduction index (I_bioprod) and terrestrial index (I_terr) were produced. The transformation of CHO to CHOS compounds also represented a pathway of recalcitrant DOM production. The produced recalcitrant organic compounds mostly contributed to the elevated porewater DOC concentrations, but their contribution decreased along the filtration path. The consumption of labile DOM compounds would be responsible for Fe(III) hydroxide reduction and arsenic release. The generated recalcitrant DOM may also be a driver of porewater arsenic mobility by acting as electron shuttles. This study highlights the importance of the hyporheic zone in shaping shallow groundwater DOM composition and the potential contribution to arsenic enrichment.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water , Dissolved Organic Matter , Arsenic/analysis , Ferric Compounds , Groundwater/chemistry , China , Water Pollutants, Chemical/analysis
18.
Water Res ; 243: 120349, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482004

ABSTRACT

Despite the significance of rivers and streams as pathways for microplastics (MP) entering the marine environment, limited research has been conducted on the behavior of MP within fluvial systems. Specifically, there is a lack of understanding regarding the infiltration and transport dynamics of MP across the streambed interface and within the hyporheic sediments. In this study, transport and retention of MP are investigated using a new numerical modeling approach. The model is built as a digital twin of accompanying flume experiments, which are used to validate the simulation results. The model accurately represents particle transport in turbulent water flow and within the hyporheic zone (HZ). Simulations for transport and infiltration of 1 µm MP particles into a sandy streambed demonstrate that the advection-dispersion equation can be used to adequately represent particle transport for pore-scale sized MP within the HZ. To assess the applicability of the modeling framework for larger MP, the experiment was repeated using 10 µm particles. The larger particles exhibited delayed infiltration and transport behavior, and while the model successfully represented the spatial extent of particle transport through the HZ, it was unable to fully replicate hyporheic transit times. This study is the first to combine explicit validation against experimental data, encompassing qualitative observations of MP concentration patterns and quantification of fluxes. By that, it significantly contributes to our understanding of MP transport processes in fluvial systems. The study also highlights the advantages and limitations of employing a fully integrated modeling approach to investigate the transport and retention behavior of MP in rivers and streams.


Subject(s)
Microplastics , Plastics , Geologic Sediments , Computer Simulation , Rivers
19.
Sci Total Environ ; 896: 165140, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37391144

ABSTRACT

Hyporheic zone (HZ) systems have a natural purification capacity, and they are commonly used to provide high quality drinking water. However, the presence of organic contaminants in HZ systems in anaerobic environments causes the aquifer sediments to release metals (e.g., Fe) at levels above drinking water standards, which affects the quality of groundwater. In this study, the effects of typical organic pollutants (dissolved organic matter (DOM)) on Fe release from anaerobic HZ sediments were investigated. Ultraviolet fluorescence spectroscopy, three-dimensional excitation-emission matrix fluorescence spectroscopy, excitation-emission matrix spectroscopy coupled with parallel factor analysis and Illumina MiSeq high-throughput sequencing were used to determine the effects of the system conditions on Fe release from HZ sediments. Compared with the control conditions (low traffic and low DOM as a baseline), the Fe release capacity was enhanced by 26.7 % and 64.4 % at low flow rate (85.8 m/d) and high organic matter concentration (1200 mg/L), which was consistent with the residence-time effect. The transport of heavy metals under different system conditions varied with the influent organic composition. The influent organic matter composition and fluorescence parameters (the humification index, biological index and fluorescence index) were closely related to the release of the Fe effluent, while these factors had less influence on Mn and As. From 16S rRNA analysis of the aquifer media at different depths at the end of the experiment, under low flow rate and high influent concentration conditions, reduction of Fe minerals by Proteobacteria, Actinobacteriota, Bacillus, and Acidobacteria promoted the release of Fe. These functional microbes play an active role in the Fe biogeochemical cycle in addition to reducing Fe minerals to promote Fe release. In summary, this study reveals the effects of the flow rate and influent DOM concentration on the release and biogeochemistry of Fe in the HZ. The results presented herein will contribute to a better understanding of the release and transport of common groundwater contaminants in the HZ and other groundwater recharge environments.


Subject(s)
Drinking Water , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Dissolved Organic Matter , Drinking Water/analysis , RNA, Ribosomal, 16S , Metals, Heavy/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis
20.
Environ Geochem Health ; 45(8): 5785-5797, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37233861

ABSTRACT

Recently, antibiotics have been frequently detected in the hyporheic zone (HZ) as a novel contaminant. Bioavailability assessment has gradually attracted more attention in order to provide a more realistic assessment of human health risks. In this study, two typical antibiotics, oxytetracycline (OTC) and sulfamethoxazole (SMZ), were used as target pollutants in the HZ of the Zaohe-Weihe River, and the polar organics integrated sampler was used to analyze the variation of antibiotics bioavailability. According to the characteristics of the HZ, the total concentration of pollutants, pH, and dissolved oxygen (DO) were selected as major predictive factors to analyze their correlation with the antibiotics bioavailability. Then the predictive antibiotic bioavailability models were constructed by stepwise multiple linear regression method. The results showed that there was a highly significant negative correlation between OTC bioavailability and DO (P < 0.001), while SMZ bioavailability showed a highly significant negative correlation with total concentration of pollutants (P < 0.001) and a significant negative correlation with DO (P < 0.01). The results of correlation analysis were further verified by Principal Component Analysis. Based on the experimental data, we constructed eight prediction models for the bioavailability of two antibiotics and verified them. The data points of the six prediction models were distributed in the 95% prediction band, indicating that the models were more reliable and accurate. The prediction models in this study provide reference for the accurate ecological risk assessment of the bioavailability of pollutants in the HZ, and also provide a new idea for predicting the bioavailability of pollutants in practical applications.


Subject(s)
Environmental Pollutants , Oxytetracycline , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/analysis , Biological Availability , Sulfamethoxazole , Environmental Pollutants/analysis , Rivers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL