Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters











Publication year range
1.
Pestic Biochem Physiol ; 204: 106042, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277369

ABSTRACT

Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.


Subject(s)
Fungal Viruses , Rhizoctonia , Rhizoctonia/virology , Rhizoctonia/pathogenicity , Fungal Viruses/genetics , Fungal Viruses/pathogenicity , Virulence , Plant Diseases/microbiology , Plant Diseases/virology , Phylogeny , Oryza/microbiology , Oryza/virology
2.
J Fungi (Basel) ; 10(8)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39194910

ABSTRACT

Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.

3.
mSphere ; 9(8): e0042824, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39012104

ABSTRACT

Fusarium oxysporum f. sp. cubense (Foc) poses a significant threat to banana crops as a lethal fungal pathogen. The global spread of Foc underscores the formidable challenges associated with traditional management methods in combating this pathogen. This study delves into the hypovirulence-associated mycovirus in Foc. From Foc strain LA6, we isolated and characterized a novel member of the Hadakaviridae family, named Hadaka virus 1 strain LA6 (HadV1-LA6). HadV1-LA6 comprises 10 genomic RNA segments, with RNA1 to RNA7 sharing 80.9%-95.0% amino acid sequence identity with known HadV1-7n, while RNA8 to RNA10 display significantly lower identity. HadV1-LA6 demonstrates horizontal transmission capabilities in an all-or-none fashion between different Foc strains via coculturing. Phenotypic comparisons highlight that HadV1-LA6 significantly reduces the growth rates of its host fungus under cell wall stress and oxidative stress conditions. Importantly, HadV1-LA6 attenuates Foc's virulence in detached leaves and banana plants. This study represents the first introduction of a novel hypovirulence-associated Hadaka virus 1 in Foc.IMPORTANCEFusarium wilt of banana (FWB) is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). Among various strategies, biocontrol emerges as a safe, ecologically friendly, and cost-effective approach to managing FWB. In this study, we focus on exploring the potential of a novel hypovirulent member of hadakavirid, HadV1-LA6. Previous reports suggest that HadV1 shows no apparent effect on the host. However, through phenotypic assessments, we demonstrate that HadV1-LA6 significantly impedes the growth rates of its host fungus under stress conditions. More importantly, HadV1-LA6 exhibits a remarkable capacity to attenuate Foc's virulence in detached leaves and banana plants. Furthermore, HadV1-LA6 could be horizontally transmitted between different Foc strains, presenting a promising resource for revealing the molecular mechanism of the interaction between Hadaka virus 1 and its host.


Subject(s)
Fungal Viruses , Fusarium , Musa , Plant Diseases , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/virology , Musa/microbiology , Musa/virology , Plant Diseases/microbiology , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/physiology , Virulence , Genome, Viral , Phylogeny , RNA Viruses/genetics , RNA Viruses/pathogenicity , RNA Viruses/classification , RNA, Viral/genetics
4.
Viruses ; 16(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38932193

ABSTRACT

In the current study, a novel strain of Fusarium oxysporum alternavirus 1 (FoAV1) was identified from the Fusarium oxysporum f. sp. melonis (FOM) strain T-BJ17 and was designated as Fusarium oxysporum alternavirus 1-FOM (FoAV1-FOM). Its genome consists of four dsRNA segments of 3515 bp (dsRNA1), 2663 bp (dsRNA2), 2368 bp (dsRNA3), and 1776 bp (dsRNA4) in length. Open reading frame 1 (ORF1) in dsRNA1 was found to encode a putative RNA-dependent RNA polymerase (RdRp), whose amino acid sequence was 99.02% identical to that of its counterpart in FoAV1; while ORF2 in dsRNA2, ORF3 in dsRNA3, and ORF4 in dsRNA4 were all found to encode hypothetical proteins. Strain T-BJ17-VF, which was verified to FoAV1-FOM-free, was obtained using single-hyphal-tip culture combined with high-temperature treatment to eliminate FoAV1-FOM from strain T-BJ17. The colony growth rate, ability to produce spores, and virulence of strain T-BJ17 were significantly lower than those of T-BJ17-VF, while the dry weight of the mycelial biomass and the sensitivity to difenoconazole and pydiflumetofen of strain T-BJ17 were greater than those of T-BJ17-VF. FoAV1-FOM was capable of 100% vertical transmission via spores. To our knowledge, this is the first time that an alternavirus has infected FOM, and this is the first report of hypovirulence and increased sensitivity to difenoconazole and pydiflumetofen induced by FoAV1-FOM infection in FOM.


Subject(s)
Fungal Viruses , Fusarium , Genome, Viral , Plant Diseases , Triazoles , Fusarium/drug effects , Fusarium/genetics , Fusarium/virology , Fusarium/pathogenicity , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , Fungal Viruses/physiology , Plant Diseases/microbiology , Plant Diseases/virology , Triazoles/pharmacology , Dioxolanes/pharmacology , Virulence , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/drug effects , RNA Viruses/classification , Phylogeny , Open Reading Frames , Triticum/microbiology , Triticum/virology
5.
Virus Genes ; 60(4): 402-411, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38717669

ABSTRACT

A wide diversity of mycoviruses has been reported from Botrytis species, some with the potential to suppress the pathogenic abilities of this fungus. Considering their importance, this study was devised to find potential hypovirulence-associated mycoviruses found in Botrytis cinerea strains isolated from Pakistani strawberry fields. Here we report the complete genome characterization of two fusariviruses co-infecting a single isolate of phytopathogenic fungus B. cinerea (Kst14a). The viral genomes were sequenced by deep sequencing using total RNA fractions of the Kst14a isolate. The identified viruses were tentatively named Botrytis cinerea fusarivirus 9 (BcFV9) and Botrytis cinerea fusarivirus 3a (BcFV3a). Both viruses had a single-segmented (ssRNA) genome having a size of 6424 and 8370 nucleotides encoding two discontinuous open reading frames (ORFs). ORF-1 of both mycoviruses encodes for a polyprotein having a conserved domain of RNA-dependent RNA polymerase (RdRP) and a helicase domain (Hel) which function in RNA replication, while ORF2 encodes a hypothetical protein with an unknown function, respectively. Phylogenetic analysis indicated that BcFV9 made a clade with the genus Alphafusarivirus and BcFV3a fall in the genus Betafusarivirus in the family Fusariviridae. To our knowledge, this is the first report of two fusariviruses identified in isolates of B. cinerea from Pakistan. Both mycoviruses successfully transfected to a compatible strain of B. cinerea (Mst11). A comparison of virus-free (VF) and virus-infected (VI) isogenic lines showed the presence of these viruses was causing hypovirulence in infected strains. Virus-infected strains also had a small lesion size while testing the pathogenicity via apple assay.


Subject(s)
Botrytis , Fungal Viruses , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Botrytis/virology , Botrytis/genetics , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , Plant Diseases/microbiology , RNA, Viral/genetics , Fragaria/microbiology , Fragaria/virology , Pakistan , Viral Proteins/genetics , High-Throughput Nucleotide Sequencing
6.
Int J Biol Macromol ; 271(Pt 1): 132437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761910

ABSTRACT

Colletotrichum fructicola is a globally significant phytopathogenic fungus. Mycovirus-induced hypovirulence has great potential for biological control and study of fungal pathogenic mechanisms. We previously reported that the mycovirus Colletotrichum alienum partitivirus 1 (CaPV1) is associated with the hypovirulence of C. fructicola, and the present study aimed to further investigate a host factor and its roles in mycovirus-induced hypovirulence. A gene named CfKOB1, which encodes putative protein homologous to the ß-subunit of voltage-gated potassium channels and aldo-keto reductase, is downregulated upon CaPV1 infection and significantly upregulated during the early infection phase of Nicotiana benthamiana by C. fructicola. Deleting the CfKOB1 gene resulted in diminished vegetative growth, decreased production of asexual spores, hindered appressorium formation, reduced virulence, and altered tolerance to abiotic stresses. Transcriptome analysis revealed that CfKOB1 regulates many metabolic pathways as well as the cell cycle and apoptosis. Furthermore, enhanced apoptosis was observed in the ΔCfKOB1 mutants. Viral RNA accumulation was significantly increased in the CfKOB1 deletion mutant. Additionally, our findings demonstrated that CaPV1 infection in the WT strain also induced cell apoptosis. Collectively, these results highlight the diverse biological roles of the CfKOB1 gene in the fungus C. fructicola, while it also participates in mycovirus-induced hypovirulence by regulating apoptosis.


Subject(s)
Apoptosis , Colletotrichum , Fungal Viruses , Colletotrichum/pathogenicity , Fungal Viruses/genetics , Virulence/genetics , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Nicotiana/microbiology , Nicotiana/virology , Plant Diseases/microbiology , Plant Diseases/virology
7.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667923

ABSTRACT

A novel strain of Fusarium oxysporum virus 1 (FoV1) was identified from the Fusarium oxysporum f. sp. niveum strain X-GS16 and designated as Fusarium oxysporum virus 1-FON (FoV1-FON). The full genome of FoV1-FON is 2902 bp in length and contains two non-overlapping open reading frames (ORFs), ORF1 and ORF2, encoding a protein with an unknown function (containing a typical -1 slippery motif G_GAU_UUU at the 3'-end) and a putative RNA-dependent RNA polymerase (RdRp), respectively. BLASTx search against the National Center for the Biotechnology Information (NCBI) non-redundant database showed that FoV1-FON had the highest identity (97.46%) with FoV1. Phylogenetic analysis further confirmed that FoV1-FON clustered with FoV1 in the proposed genus Unirnavirus. FoV1-FON could vertically transmit via spores. Moreover, FoV1-FON was transmitted horizontally from the F. oxysporum f. sp. niveum strain X-GS16 to the F. oxysporum strain HB-TS-YT-1hyg. This resulted in the acquisition of the F. oxysporum strain HB-TS-YT-1hyg-V carrying FoV1-FON. No significant differences were observed in the sporulation and dry weight of mycelial biomass between HB-TS-YT-1hyg and HB-TS-YT-1hyg-V. FoV1-FON infection significantly increased the mycelial growth of HB-TS-YT-1hyg, but decreased its virulence to potato tubers and sensitivity to difenoconazole, prochloraz, and pydiflumetofen. To our knowledge, this is the first report of hypovirulence and reduced sensitivity to difenoconazole, prochloraz, and pydiflumetofen in F. oxysporum due to FoV1-FON infection.

8.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483998

ABSTRACT

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Subject(s)
Ascomycota , Fungal Viruses , Malus , Mycoses , RNA Viruses , Ascomycota/genetics , RNA Viruses/genetics , Plant Diseases/microbiology , Malus/metabolism
9.
Front Microbiol ; 15: 1291542, 2024.
Article in English | MEDLINE | ID: mdl-38476955

ABSTRACT

Cryphonectria hypovirus 1 (CHV-1) has been widely studied and used as a biocontrol agent because of its ability to infect the chestnut blight fungus, Cryphonectria parasitica, and to reduce its virulence. Knowledge about the hypovirus, its presence, and diversity is completely lacking in South Tyrol (northern Italy), which may obstruct biocontrol measures for chestnut blight based on CHV-1. This work aimed to study the occurrence of CHV-1 infecting C. parasitica in South Tyrol and to perform a genetic characterization of the hypovirus. In South Tyrol, CHV-1 was found to occur in 29.2% of the fungal isolates investigated, varying in frequency between different regions and chestnut stands. Twenty-three haplotypes based on partial cDNA (complementary DNA) sequences of open reading frame (ORF)-A and 30 haplotypes based on partial cDNA sequences of ORF-B were identified among 47 and 56 hypovirulent fungal isolates, respectively. Phylogenetic analysis showed that all the haplotypes belonged to the Italian subtype of CHV-1 and that they were closely related to the populations of Italy, Switzerland, Croatia and Slovenia. Evidence of recombination was not found in the sequences and point mutations were the main source of diversity. Overall, this study indicated that the prevalence of CHV-1 in South Tyrol is low compared to many other central and western European populations and determined a need to actively impose biocontrol measures. Using sequence analysis, we identified some variants of interest of CHV-1 that should be studied in detail for their potential use in biocontrol.

10.
J Fungi (Basel) ; 10(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535188

ABSTRACT

Root rot as a result of Salvia miltiorrhiza is a common root disease caused by Fusarium spp., which has become one of the main diseases affecting the production of S. miltiorrhiza. Currently, several hypovirulence-related mycoviruses have been identified in many phytopathogenic fungi, including Fusarium spp., which show potential as biological controls. In this study, we report a new mycovirus, Fusarium oxysporum partitivirus 1 (FoPV1), isolated from F. oxysporum strain FCR51, which is a causal agent of S. miltiorrhiza dry rot. The FoPV1 genome contains two double-stranded RNA segments (dsRNA1 and dsRNA2). The size of dsRNA1 is 1773 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp). The dsRNA2 is 1570 bp in length, encoding a putative capsid protein (CP). Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of the RdRp and the CP proteins indicated that FoPV1 appears to be a new member of the family Partitiviridae that is related to members of the genus Gammapartitivirus. Pathogenicity assay showed that FoPV1 confers hypervirulence to its host, F. oxysporum. This is the first report of a partitivirus infecting F. oxysporum and the first hypovirulence-related mycovirus from the causal agent of S. miltiorrhiza dry rot.

11.
mBio ; 15(2): e0253023, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193704

ABSTRACT

Colletotrichum spp. are economically important phytopathogenic fungi that cause anthracnose in a variety of plant species worldwide. Hypovirulence-associated mycoviruses provide new options for the biological control of plant fungal diseases. Here, we found a novel partitivirus from Colletotrichum alienum and named it Colletotrichum alienum partitivirus 1 (CaPV1). CaPV1 contained two dsRNA segments encoding an RNA-dependent RNA polymerase and a capsid protein and was classified under the genus Gammapartitivirus of the family Partitiviridae. CaPV1 significantly decreased host virulence, mycelial growth, appressorial development, and appressorium turgor but increased conidial production with abnormal morphology. In addition, CaPV1 could be successfully transfected into other Colletotrichum species, including C. fructicola, C. spaethianum, and C. gloeosporioides, and caused hypovirulence, indicating the broad application potential of this virus. CaPV1 caused significant transcriptional rewiring of the host fungus C. alienum. Notably, some genes related to vesicle transport in the CaPV1-infected strain were downregulated, consistent with the impaired endocytosis pathway in this fungus. When the Rab gene CaRab7, which is associated with endocytosis in vesicle transport, was knocked out, the virulence of the mutants was reduced. Overall, our findings demonstrated that CaPV1 has the potential to control anthracnose caused by Colletotrichum, and the mechanism by which Colletotrichum induces hypovirulence is caused by affecting vesicle transport.IMPORTANCEColletotrichum is a kind of economically important phytopathogenic fungi that cause anthracnose disease in a variety of plant species worldwide. We found a novel mycovirus of the Gammapartitivirus genus and Partitiviridae family from the phytopathogenic fungus Colletotrichum alienum and named it CaPV1. This study revealed that CaPV1 infection significantly decreased host virulence and fitness by affecting mycelial growth, appressorial development, and appressorium turgor. In addition, CaPV1 could also infect other Colletotrichum species, including C. fructicola, C. spaethianum, and C. gloeosporioides, by viral particle transfection and resulting in hypovirulence of these Colletotrichum species. Transcriptomic analysis showed that CaPV1 caused significant transcriptional rewiring of the host fungus C. alienum, especially the genes involved in vesicle transport. Moreover, endocytosis and gene knockout assays demonstrated that the mechanism underlying CaPV1-induced hypovirulence is, at least in part, caused by affecting the vesicle transport of the host fungus. This study provided insights into the mechanisms underlying the pathogenesis of Colletotrichum species and mycovirus-fungus interactions, linking the role of mycovirus and fungus vesicle transport systems in shaping fungal pathogenicity.


Subject(s)
Colletotrichum , Fungal Viruses , Mycoses , RNA Viruses , Colletotrichum/genetics , RNA Viruses/genetics , Virulence , Fungal Viruses/genetics , Plant Diseases/microbiology , Phylogeny
12.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Article in English | MEDLINE | ID: mdl-38114080

ABSTRACT

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Fraxinus , Fungal Viruses , Plant Diseases , Fraxinus/microbiology , Fraxinus/virology , Plant Diseases/microbiology , Plant Diseases/virology , Plant Diseases/prevention & control , Fungal Viruses/physiology , Fungal Viruses/isolation & purification , Ascomycota/virology , Ascomycota/physiology , Virulence , Pest Control, Biological , Biological Control Agents
13.
Virol J ; 20(1): 306, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114992

ABSTRACT

BACKGROUND: Family Genomoviridae was recently established, and only a few mycoviruses have been described and characterized, and almost all of them (Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, Fusarium graminearum gemyptripvirus 1 and Botrytis cinerea gemydayirivirus 1) induced hypovirulence in their host. Botrytis cinerea ssDNA virus 1 (BcssDV1), a tetrasegmented single-stranded DNA virus infecting the fungus Botrytis cinerea, has been molecularly characterized in this work. METHODS: BcssDV1 was detected in Spanish and Italian B. cinerea field isolates obtained from grapevine. BcssDV1 variants genomes were molecularly characterized via NGS and Sanger sequencing. Nucleotide and amino acid sequences were used for diversity and phylogenetic analysis. Prediction of protein tertiary structures and putative associated functions were performed by AlphaFold2 and DALI. RESULTS: BcssDV1 is a tetrasegmented single-stranded DNA virus. The mycovirus was composed by four genomic segments of approximately 1.7 Kb each, which are DNA-A, DNA-B, and DNA-C and DNA-D, that coded, respectively, for the rolling-circle replication initiation protein (Rep), capsid protein (CP) and two hypothetical proteins. BcssDV1 was present in several Italian and Spanish regions with high incidence and low variability among the different viral variants. DNA-A and DNA-D were found to be the more conserved genomic segments among variants, while DNA-B and DNA-C segments were shown to be the most variable ones. Tertiary structures of the proteins encoded by each segment suggested specific functions associated with each of them. CONCLUSIONS: This study presented the first complete sequencing and characterization of a tetrasegmented ssDNA mycovirus, its incidence in Spain and Italy, its presence in other countries and its high conservation among regions.


Subject(s)
Fungal Viruses , RNA Viruses , DNA, Single-Stranded/genetics , Phylogeny , Amino Acid Sequence , Botrytis/genetics , Genome, Viral
14.
Arch Microbiol ; 206(1): 38, 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38142438

ABSTRACT

Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.


Subject(s)
Ascomycota , Fungal Viruses , Mycoses , Viruses , Fungi , Mycoses/microbiology , Plants , Fungal Viruses/physiology , Plant Diseases/microbiology
15.
Virol J ; 20(1): 255, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924080

ABSTRACT

BACKGROUND: The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS: Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS: We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION: Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.


Subject(s)
Beauveria , Fungal Viruses , Animals , Virulence/genetics , Fungal Viruses/genetics , Beauveria/genetics , Gene Expression Profiling , Larva
16.
Adv Sci (Weinh) ; 10(29): e2302606, 2023 10.
Article in English | MEDLINE | ID: mdl-37587761

ABSTRACT

Mycovirus-mediated hypovirulence has the potential to control fungal diseases. However, the availability of hypovirulence-conferring mycoviruses for plant fungal disease control is limited as most fungal viruses are asymptomatic. In this study, the virus-induced gene silencing (VIGS) vector p26-D4 of Fusarium graminearum gemytripvirus 1 (FgGMTV1), a tripartite circular single-stranded DNA mycovirus, is successfully constructed to convert the causal fungus of cereal Fusarium head blight (FHB) into a hypovirulent strain. p26-D4, with an insert of a 75-150 bp fragment of the target reporter transgene transcript in both sense and antisense orientations, efficiently triggered gene silencing in Fusarium graminearum. Notably, the two hypovirulent strains, p26-D4-Tri101, and p26-D4-FgPP1, obtained by silencing the virulence-related genes Tri101 and FgPP1 with p26-D4, can be used as biocontrol agents to protect wheat from a fungal disease FHB and mycotoxin contamination at the field level. This study not only describes the first mycovirus-derived VIGS system but also proves that the VIGS vector can be used to establish multiple hypovirulent strains to control pathogenic fungi.


Subject(s)
Fungal Viruses , Fusarium , Mycoses , Fusarium/genetics , Fungal Viruses/genetics , Triticum/genetics , Triticum/microbiology , Plants
17.
Virology ; 585: 259-269, 2023 08.
Article in English | MEDLINE | ID: mdl-37453341

ABSTRACT

Mycoviruses are natural inhabitants of fungi and have been identified in almost all fungal taxonomic groups. Mycoviruses that infect phytopathogenic fungi are now becoming a hot research area due to their potential for the biocontrol of important plant pathogens. But, before considering a mycovirus for biocontrol, we should be fully aware of the effects it induces in a fungal host and its interactions with other viruses, fungal strains and even the host plants. Mycoviral infections are generally associated with different effects, ranging from hypovirulence to hypervirulence, but they can often be cryptic (latent infections). The cryptic lifestyle has been associated to many mycoviruses, but thanks to growing knowledge we are now aware that it is often associated to axenic conditions while the real effects can be observed only in nature. Other mycoviruses either promote (hypervirulence) or (hypovirulence) fungal pathogenicity by a strong impact on the fungal physiology or by blocking the production of toxins or effectors. Finally, indirect effects of mycoviral infections can also be provided to the plant that hosts the fungal isolate, highlighting not only their potential as direct biocontrol agents but also as priming agents for plant resilience to biotic and abiotic stresses. This review provides a broad overview of mycoviral interactions both with their hosts and with other mycoviruses, highlighting the most interesting examples. In contrast to what has been observed to date, we believe that the collective availability of these data will not only improve our understanding of mycoviruses, but also increase our confidence in considering them as alternative measures against fungal diseases to improve the sustainable production of food and feed commodities.


Subject(s)
Fungal Viruses , RNA Viruses , Viruses , Fungal Viruses/genetics , Fungi , Plants , Plant Diseases
18.
Mol Plant Microbe Interact ; 36(11): 726-736, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37459471

ABSTRACT

How mycovirus-induced hypovirulence in fungi activates plant defense is still poorly understood. The changes in plant fitness and gene expression caused by the inoculation of the fungus Sclerotinia sclerotiorum harboring and made hypovirulent by the mycovirus soybean leaf-associated gemygorvirus-1 (SlaGemV-1) of the species Gemycircularvirus soybe1 were examined in this study. As the hypovirulent fungus (DK3V) colonized soybean Glycine max, plant transcriptomic analysis indicated changes in defense responses and photosynthetic activity, supported by an upregulation of individual genes and overrepresentation of photosystem gene ontology groups. The upregulated genes include genes relating to both pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity as well as various genes relating to the induction of systemic acquired resistance and the biosynthesis of jasmonic acid. Plants colonized with DK3V showed a resistant phenotype to virulent S. sclerotiorum infection. Plant height and leaf area were also determined to be larger in plants grown with the virus-infected fungus. Here, we hypothesize that inoculation of soybean with DK3V can result in the triggering of a wide range of defense mechanisms to prime against later infection. The knowledge gained from this study about plant transcriptomics and phenotype will help prime plant immunity with mycovirus-infected hypovirulent fungal strains more effectively. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fungal Viruses , Viruses , Plant Immunity , Gene Expression Profiling , Plant Diseases/microbiology
19.
Viruses ; 15(6)2023 05 27.
Article in English | MEDLINE | ID: mdl-37376560

ABSTRACT

Biological control of Cryphonectria parasitica fungus, the causal agent of chestnut blight, by virus infection (hypovirulence) is an effective control strategy against chestnut blight in Europe and some parts of North America. The most studied mycovirus is the Cryphonectria hypovirus 1 (CHV1) type species of the Hypoviridae family. In this study, the CHV1 virus was studied within some highly infected British isolates of Cryphonectria parasitica, gained in the past through co-culture transmissions. The effects of six temperatures (5-30 °C, in 5 °C steps) on six infected isolates (three with viral strain E-5, and other three with viral strain L-18) and their respective negative non-infected controls, three isogenic virulent fungal isolates, were examined. Experiments were performed with the nine isolate types with three replicates on potato dextrose agar (PDA) with cellophane sheets per isolate and temperature. A recently developed rapid, specific, quantitative reverse transcription PCR (RT-qPCR) screening method was used. This enabled quantifying the concentration (nanograms per microliter or copy numbers) of the virus within each isolate repetition. The presence of the virus had a significant negative effect between 20 and 25 °C on the C. parasitica growth rate, which was anyway highly influenced by and positively correlated with the temperature. The temperature clearly determined the virus accumulation and its recovery from cold or heat, and the virus optimum temperature was estimated at 15-25 °C.


Subject(s)
Fungal Viruses , RNA Viruses , Temperature , Plant Diseases/microbiology
20.
Viruses ; 15(5)2023 05 19.
Article in English | MEDLINE | ID: mdl-37243288

ABSTRACT

Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.


Subject(s)
Fungal Viruses , RNA Viruses , Viruses , Humans , Fungal Viruses/genetics , Fungi , Plants , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL