Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Crit Rev Biotechnol ; 40(3): 357-364, 2020 May.
Article in English | MEDLINE | ID: mdl-32075446

ABSTRACT

Synthetic biology emerged in the USA and Europe twenty years ago and quickly developed innovative research and technology as a result of continued funding. Synthetic biology is also growing in many developing countries of Africa, Asia and Latin America, where it could have a large economic impact by helping its use of genetic biodiversity in order to boost existing industries. Starting in 2011, Argentine synthetic biology developed along an idiosyncratic path. In 2011-2012, the main focus was not exclusively research but also on community building through teaching and participation in iGEM, following the template of the early "MIT school" of synthetic biology. In 2013-2015, activities diversified and included society-centered projects, social science studies on synthetic biology and bioart. Standard research outputs such as articles and industrial applications helped consolidate several academic working groups. Since 2016, the lack of a critical mass of researchers and a funding crisis were partially compensated by establishing links with Latin American synthetic biologists and with other socially oriented open technology collectives. The TECNOx community is a central node in this growing research and technology network. The first four annual TECNOx meetings brought together synthetic biologists with other open science and engineering platforms and explored the relationship of Latin American technologies with entrepreneurship, open hardware, ethics and human rights. In sum, the socioeconomic context encouraged Latin American synthetic biology to develop in a meandering and diversifying manner. This revealed alternative ways for growth of the field that may be relevant to other developing countries.


Subject(s)
Synthetic Biology/education , Synthetic Biology/trends , Argentina , Developing Countries , Humans , Latin America , Residence Characteristics , Social Sciences , Synthetic Biology/methods
2.
Synth Biol (Oxf) ; 2(1): ysx006, 2017 Jan.
Article in English | MEDLINE | ID: mdl-32995507

ABSTRACT

The diversity and flexibility of life offers a wide variety of molecules and systems useful for biosensing. A biosensor device should be robust, specific and reliable. Inorganic arsenic is a highly toxic water contaminant with worldwide distribution that poses a threat to public health. With the goal of developing an arsenic biosensor, we designed an incoherent feed-forward loop (I-FFL) genetic circuit to correlate its output pulse with the input signal in a relatively time-independent manner. The system was conceived exclusively based on the available BioBricks in the iGEM Registry of Standard Biological Parts. The expected behavior in silico was achieved; upon arsenic addition, the system generates a short-delayed reporter protein pulse that is dose dependent to the contaminant levels. This work is an example of the power and variety of the iGEM Registry of Standard Biological Parts, which can be reused in different sophisticated system designs like I-FFLs. Besides the scientific results, one of the main impacts of this synthetic biology project is the influence it had on team's members training and career choices which are summarized at the end of this article.

SELECTION OF CITATIONS
SEARCH DETAIL