Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
2.
Virus Res ; 345: 199380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657837

ABSTRACT

The aim of this study was to investigate the in vitro and in vivo antiviral effects of CLEVir-X, against porcine reproductive and respiratory syndrome virus (PRRSV). CLEVir-X is a nucleoside analogue and a dialdehyde form of xanthosine. CLEVir-X demonstrated antiviral action during the in vitro portion of this experiment with its inosine monophosphate dehydrogenase (IMPDH) inhibition against PRRSV. The anti-PRRSV effect of CLEVir-X was recovered through supplementation with guanosine. This suggests that PRRSV replication may be regulated through IMPDH and its guanosine biosynthetic pathway. CLEVir-X treatment in cultures resulted in mutation frequency increase of up to 7.8-fold within the viral genomes (e.g. ORF6) compared to their parallel, untreated cultures. The incorporation of CLEVir-X into the viral genome causes lethal mutagenesis and subsequent decrease in specific infectivity. During the in vivo antiviral experiment, 21-day-old pigs began oral administration of 5 mL of phosphate buffered saline containing CLEVir-X (with purity of 68 % and dosage of 40 mg/kg body weight). This treatment was provided twice daily at 9:00AM and 5:00PM for 14 days. Pigs were simultaneously intranasally inoculated with PRRSV at the beginning of CLEVir-X treatment (21 days of age). Several beneficial effects from the oral administration of CLEVir-X were observed including reduction of body temperature, alleviation of respiratory clinical signs, decreased PRRSV load in both blood and lung tissues, and mitigation of lung interstitial pneumonia lesions. The results of the present study demonstrated that CLEVir-X has mutagenic and nonmutagenic modes of antiviral action against PRRSV based on both in vitro and in vivo antiviral experiments.


Subject(s)
Antiviral Agents , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Antiviral Agents/pharmacology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Virus Replication/drug effects , Lung/virology , Lung/drug effects , Lung/pathology , Viral Load/drug effects , Administration, Oral
3.
Integr Cancer Ther ; 23: 15347354241236205, 2024.
Article in English | MEDLINE | ID: mdl-38462929

ABSTRACT

BACKGROUND: Siwu Decoction (SWD) is a well-known classical TCM formula that has been shown to be effective as a basis for preventing and reducing liver metastases (LM). However, the active ingredients and potential molecular mechanisms remain unclear. OBJECTIVE: This study aimed to systematically analyze the active ingredients and potential molecular mechanisms of SWD on LM and validate mechanisms involved. MATERIALS AND METHODS: The active ingredients in SWD were extracted by UHPLC-MS/MS in a latest study. Protox II was retrieved to obtain toxicological parameters to detect safety. Swiss Target Prediction database was exploited to harvest SWD targets. Five databases, Gene Cards, DisGeNET, Drugbank, OMIM, and TTD, were employed to filter pathogenic targets of LM. STRING database was utilized to construct the protein-protein interaction network for therapeutic targets, followed by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. GEPIA database and the Human Protein Atlas were taken to observe the expression of core genes and proteins. ImmuCellAI algorithm was applied to analyze the immune microenvironment and survival relevant to core genes. Molecular docking was performed to verify the affinity of SWD effective ingredients to core targets. In vivo experiments were carried out to validate the anti-LM efficacy of SWD and verify the pivotal mechanisms of action. RESULTS: Eighteen main bioactive phytochemicals identified were all non-hepatotoxic. PPI network acquired 118 therapeutic targets, of which VEGFA, CASP3, STAT3, etc. were identified as core targets. KEGG analysis revealed that HIF-1 pathway and others were critical. After tandem targets and pathways, HIF-1/VEGF was regarded as the greatest potential pathway. VEGFA and HIF-1 were expressed differently in various stages of cancer and normal tissues. There was a negative regulation of immunoreactive cells by VEGFA, which was influential for prognosis. Molecular docking confirmed the tight binding to VEGFA. This study revealed the exact effect of SWD against LM, and identified significant inhibition the expression of HIF-1α, VEGF, and CD31 in the liver microenvironment. CONCLUSION: This study clarified the active ingredients of SWD, the therapeutic targets of LM and potential molecular mechanisms. SWD may protect against LM through suppressing HIF-1/VEGF pathway.


Subject(s)
Drugs, Chinese Herbal , Liver Neoplasms , Humans , Molecular Docking Simulation , Network Pharmacology , Tandem Mass Spectrometry , Vascular Endothelial Growth Factor A , Liver Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Tumor Microenvironment
4.
Article in English | MEDLINE | ID: mdl-38419585

ABSTRACT

OBJECTIVES: We propose an evolution of a dielectric elastomer actuator-based cardiac assist device that acts as a counterpulsation system. We introduce a new pre-stretched actuator and implant the device in a graft bypass between the ascending and descending aorta to redirect all blood through the device (ascending aorta clamped). The objective was to evaluate the influence of these changes on the assistance provided to the heart. METHODS: The novel para-aortic device and the new implantation technique were tested in vivo in 5 pigs. We monitored the pressure and flow in the aorta as well as the pressure-volume characteristics of the left ventricle. Different activation timings were tested to identify the optimal device actuation. RESULTS: The proposed device helps reducing the end-diastolic pressure in the aorta by up to 13 ± 4.0% as well as the peak systolic pressure by up to 16 ± 3.6%. The early diastolic pressure was also increased up to 10 ± 3.5%. With different activation, we also showed that the device could increase or decrease the stroke volume. CONCLUSIONS: The new setup and the novel para-aortic device presented here helped improve cardiac assistance compared to previous studies. Moreover, we revealed a new way to assist the heart by actuating the device at different starting time to modify the left ventricular stroke volume and stroke work.

5.
Metab Brain Dis ; 39(1): 89-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37999884

ABSTRACT

Wilson disease (WD) is a rare hereditary copper metabolism disorder, wherein cognitive impairment is a common clinical symptom. Chrysophanol (CHR) is an active compound with neuroprotective effects. The study aims to investigate the neuroprotective effect of CHR in WD and attempted to understand the potential mechanisms. Network pharmacology analysis was applied to predict the core target genes of CHR against cognitive impairment in WD. The rats fed with copper-laden diet for 12 weeks, and the effect of CHR on the copper content in liver and 24-h urine, the learning and memory ability, the morphological changes and the apoptosis level of neurons in hippocampal CA1 region, the expression level of Bax, Bcl-2, Cleaved Caspase-3, p-PI3K, PI3K, p-AKT, and AKT proteins were detected. Network pharmacology analysis showed that cell apoptosis and PI3K-AKT signaling pathway might be the main participants in CHR against cognitive impairment in WD. The experiments showed that CHR could reduce the copper content in liver, increase the copper content in 24-h urine, improve the ability of the learning and memory, alleviate the damage and apoptosis level of hippocampal neurons, down-regulate the expression of Bax, Cleaved Caspase-3, and up-regulate the expressions of Bcl-2, p-PI3K/PI3K, p-AKT/AKT. These results suggested that CHR could alleviate cognitive impairment in WD by inhibiting cell apoptosis and triggering the PI3K-AKT signaling pathway.


Subject(s)
Anthraquinones , Cognitive Dysfunction , Hepatolenticular Degeneration , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , Hepatolenticular Degeneration/drug therapy , Copper , bcl-2-Associated X Protein , Network Pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Apoptosis
6.
Artif Organs ; 48(5): 504-513, 2024 May.
Article in English | MEDLINE | ID: mdl-38146899

ABSTRACT

BACKGROUND: A percutaneous ventricular assist device (pVAD) is an effective method to treat heart failure, but its complications, mainly hemolysis and thrombus formation, cannot be ignored. Accurate evaluation of hemolysis and thrombus formation in pVAD is essential to guide the development of pVAD and reduce the incidence of complications. METHODS: This study optimized the numerical model to predict hemolysis and thrombus formation in pVAD. The hemolysis model is based on the power law function, and the multi-component thrombus prediction model is improved by introducing the von Willebrand factor. RESULTS: The error between the numerical simulation and the hydraulic performance experiment is within 5%. The numerical results of hemolysis are in good agreement with those of in vitro experiments. Meanwhile, the thrombus location predicted by the numerical model is the same as that found in the in vivo experiment. CONCLUSION: The numerical model suggested in this study may therefore accurately assess the possible hemolytic and thrombotic dangers in pVAD, making it an effective tool to support the development of pVAD.


Subject(s)
Heart Failure , Heart-Assist Devices , Thrombosis , Humans , Hemolysis , Heart-Assist Devices/adverse effects , Heart Failure/surgery , Computer Simulation , Thrombosis/etiology
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021217

ABSTRACT

BACKGROUND:In clinical practice,Cibotium barometz and Epimedium have shown significant efficacy in the treatment of rheumatoid arthritis,but the complex active ingredients contained in the two have an unclear mechanism of action at the molecular level for the treatment of rheumatoid arthritis. OBJECTIVE:Based on network pharmacology and molecular docking technology,to establish a collagen-induced arthritis model and to verify the potential targets and pathways of Cibotium barometz and Epimedium in the treatment of rheumatoid arthritis,providing reliable experimental evidence for the use of clinical formulas with Cibotium barometz and Epimedium as the main components. METHODS:Utilizing traditional Chinese medicine research platforms,traditional Chinese medicine encyclopedias,and databases of traditional Chinese medicine and chemical components from the Shanghai Institute of Organic,effective ingredients were retrieved and identified.3D molecular formulas were obtained from the PubChem platform and target predictions were made using PharmMapper and SwissTargetPrediction.Disease targets for rheumatoid arthritis were obtained from gene databases such as DrugBank,GeneCards,and OMIM.The intersections of targets and Cibotium barometz and Epimedium were plotted using VENNY 2.1 after calibration with the Uniport database.A protein-protein interaction network graph was constructed using the STRING platform.Gene Ontology function analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed using the Metascape platform for data visualization.A four-layered network model of traditional Chinese medicine,ingredients,targets,diseases,and pathways was constructed using Cytoscape 3.9.0.The main effective ingredients were docked with core targets using AutoDock-Vina software to explore the best binding targets.A type II collagen+adjuvant-induced arthritis rat model was established,and the effects of Cibotium barometz and Epimedium on relevant pathway targets and inflammatory cell factors were observed after 21 days of intervention. RESULTS AND CONCLUSION:A total of 28 active ingredients from Cibotium barometz and Epimedium were selected,yielding 288 intersection targets for rheumatoid arthritis.The main ingredients included isobavachalcone,cibotium,and epimedium.The main targets included protein kinase 1 for serine/threonine(AKT1),tumor necrosis factor,and vascular endothelial growth factor A.Gene ontology analysis yielded 2 232 biological processes,mainly related to serine protein phosphorylation,positive regulation of serine/threonine protein kinase,and reactive oxygen metabolism.Kyoto Encyclopedia of Genes and Genomes enrichment analysis yielded 202 pathways,mainly involving the PI3K/AKT signaling pathway and epidermal growth factor receptor signaling pathway,which may exert therapeutic effects by regulating synovial cell apoptosis and proliferation and suppressing inflammatory factors.Molecular docking results showed the strongest binding activity and stable structure of Cibotium barometz and Epimedium with AKT1 and estrogen receptor transcription factor 1,which was closely related to apoptosis and proliferation and inflammatory signaling pathways such as PI3K/AKT.Cibotium barometz and Epimedium reduced the expression of interleukin-1β,interleukin-6,and tumor necrosis factor-α in the serum of collagen-induced arthritis rat models.Cibotium barometz and Epimedium reduced the expression of p-PI3K,p-AKT,and p-FOXO1 in the synovium of collagen-induced arthritis rat models.The results indicate that the combination of Cibotium barometz and Epimedium may exert therapeutic effects by inhibiting the proliferation of synovial cells and suppressing the expression of inflammatory factors via the PI3K/AKT/FOXO1 signaling pathway.This may be closely related to the occurrence of inflammation and bone destruction in rheumatoid arthritis,and provides a reference for the rational use and development of new drugs in clinical practice.

8.
ACS Appl Bio Mater ; 7(1): 332-343, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38116621

ABSTRACT

The wound recovery phenomenon remains as one of the long challenging concerns worldwide. In search of user-friendly dressing materials, in this report, we fabricated a rational combinatorial strategy utilizing stereogenic harmony in a triphenylalanine fragment and appending it to δ-amino valeric acid at the N-terminus (hydrogelators I-VII) such that a potential scaffold could be fished out from the design. Our investigations revealed that all the hydrogelators displayed not only excellent self-healing performance as well as high mechanical strength at physiological pH but also mechanical stress-triggered gel-sol-gel transition properties. The structural and morphological investigation confirmed the presence of ß-sheet-like assemblies stabilized by intermolecular H-bonding and π-π interactions. Moreover, these scaffolds showed substantial antibacterial as well as antifungal efficacy against common wound pathogens, i.e, four Gram-positive bacteria (Staphylococcus aureus, Streptococcus mutans, B. subtilis, E. fecalis), four Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, P. aerugonosa, Proteus spp.), and two fungal strains (C. albicans and A. niger). The manifestation of consistent antioxidant properties might be due to the enhancement of amphiphilicity in hydrogelators, which has led to the generation of reactive oxygen species (ROS) in a facile manner, a probable mechanism to damage the microbial membrane, the driving force behind the antimicrobial efficacy. Also, the constructs exhibited proteolytic resistance and remarkable biocompatibility toward mammalian cells. Thus, based on the above benchmarks, the homochiral hydrogelator IV was seived out from a pool of seven, and we proceeded toward its in vivo evaluation using full-thickness excisional wounds in Wister rats. The scaffolds also accentuated the re-epithelialization as well in comparison to the negative control, thereby facilitating the wound closure process in a very short span of time (10 days). Overall, our in vitro and in vivo analysis certifies hydrogelator IV as an ideal dressing material that might hold immense promise for future wound care management.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Rats , Animals , Rats, Wistar , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Antioxidants , Mammals
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1029527

ABSTRACT

Objective:To investigate the mechanism of Yunshi Ganmao Heji against respiratory syncytial virus (RSV) infection based on network pharmacology and in vivo experiments. Methods:Network pharmacological prediction: Several databases including TCMSP and GeneCards were used to predict the active ingredients and targets of Yunshi Ganmao Heji in the intervention of RSV infection. Cytoscape 3.2.1 software was used to construct the traditional Chinese medicine component-disease target network diagram. The interactions between proteins were analyzed by STRING database. GO functional enrichment analysis and KEGG pathway enrichment analysis were performed using Metascape database. Molecular docking technology was used to verify the results of network pharmacology. Experimental verification of Yunshi Ganmao Heji for the intervention of RSV infection: A mouse model of RSV infection was established through intranasal infection. After the administration of Yunshi Ganmao Heji, blood routine test results, lung indexes and pathological changes in lung tissue were analyzed. Peripheral blood T cell subsets were detected by flow cytometry. The levels of TNF-α, IL-6 and IL-1β in serum were detected by ELISA. RT-PCR was used to detect the relative expression of TLR4, NF-κB and RSV-N gene at mRNA level in lung tissues.Results:A total of 41 active ingredients of Yunshi Ganmao Heji and 111 drug targets for RSV infection were obtained. Besides, 167 signaling pathways mainly including PI3K/AKT, MAPK and Toll-like receptor signaling pathways were obtained. Molecular docking results showed that the binding energies of luteotin, kaempferol and quercetin, three active ingredients of Yunshi Ganmao Heji, with RSV-G, RSV-F, PI3K, AKT1 and Bcl-2 were less than 0 kcal/mol. In vivo experiment results showed that compared with RSV group, the counts of white blood cells and lymphocytes increased and the lung index decreased in high-dose Yunshi Ganmao Heji group, with statistically significant difference ( P<0.05). HE staining showed pulmonary hyperplasia, thickened alveolar wall and inflammatory cell infiltration in interstitium in RSV group. Alveoli in ribavirin group as well as low-dose, medium-dose and high-dose Yunshi Ganmao Heji groups tended to be of uniform size, and the alveolar walls was roughly uniform in thickness. Compared with RSV group, the low-dose, medium-dose and high-dose Yunshi Ganmao Heji groups showed significantly increased numbers of CD3 +, CD4 + and CD8 + T lymphocytes, decreased CD4 + /CD8 + T cell ratio, lower levels of TNF-α, IL-6, IL-1β in serum, and reduced viral load and inhibited expression of TLR4 and NF-κB at mRNA level in lung tissues ( P<0.05). Conclusions:Yunshi Ganmao Heji can regulate RSV infection by targeting multiple targets and pathways with several active ingredients. Its main functions are to alleviate pathological injury in lung tissues and reduce inflammatory response, and the possible mechanism underlying the antiviral functions may be related to its inhibitory effect on the activation of TLR4/NF-κB pathway.

10.
Lasers Med Sci ; 39(1): 3, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082158

ABSTRACT

Palladium nanoparticles (Pd NPs) show significant promise as agents for the photothermal treatment of tumors due to their high photothermal conversion efficiency and thermal stability. theoretical calculations were conducted to investigate the electric field and solid heat conduction of Pd NPs with various sizes and particle distances, aiming to achieve the maximum photothermal conversion efficiency during laser irradiation. Subsequently, Pd NPs with optimal size and structure were synthesized. In vitro and in vivo experiments were conducted to evaluate photothermal conversion. The theoretical results indicated that a peak temperature of 90.12 °C is achieved when the side length is 30 nm with a distance of 2 nm. In vitro experiments demonstrated that the photothermal conversion efficiency of Pd NPs can reach up to 61.9%. in vivo experiments revealed that injecting Pd NPs into blood vessels can effectively reduce the number of laser pulses by 22.22%, thereby inducing obvious vasoconstriction.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Palladium/pharmacology , Palladium/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Finite Element Analysis , Nanoparticles/chemistry , Neoplasms/therapy , Light , Phototherapy/methods , Cell Line, Tumor
11.
Insights Imaging ; 14(1): 189, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962712

ABSTRACT

OBJECTIVES: The aim of the study was to investigate computed tomography-based thermography (CTT) for ablation zone prediction in microwave ablation (MWA). METHODS: CTT was investigated during MWA in an in vivo porcine liver. For CTT, serial volume scans were acquired every 30 s during ablations and every 60 s immediately after MWA. After the procedure, contrast-enhanced computed tomography (CECT) was performed. After euthanasia, the liver was removed for sampling and further examination. Color-coded CTT maps were created for visualization of ablation zones, which were compared with both CECT and macroscopy. Average CT attenuation values in Hounsfield units (HU) were statistically correlated with temperatures using Spearman's correlation coefficient. CTT was retrospectively evaluated in one patient who underwent radiofrequency ablation (RFA) treatment of renal cell carcinoma. RESULTS: A significant correlation between HU and temperature was found with r = - 0.77 (95% confidence interval (CI), - 0.89 to - 0.57) and p < 0.001. Linear regression yielded a slope of - 1.96 HU/°C (95% CI, - 2.66 to - 1.26). Color-coded CTT maps provided superior visualization of ablation zones. CONCLUSION: Our results show that CTT allows visualization of the ablation area and measurement of its size and is feasible in patients, encouraging further exploration in a clinical setting. CRITICAL RELEVANCE STATEMENT: CT-based thermography research software allows visualization of the ablation zone and is feasible in patients, encouraging further exploration in a clinical setting to assess risk reduction of local recurrence.

12.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687498

ABSTRACT

Biodegradable Magnesium (Mg) implants are promising alternatives to permanent metallic prosthesis. To improve the biocompatibility and with the aim of degradation control, we provided Plasma Electrolytic Oxidation (PEO) of pure Mg implant in silicate-based solution with NaOH (S1 250 V) and Ca(OH)2 (S2 300 V). Despite the well-structured surface, S1 250 V implants induced enormous innate immunity reaction with the prevalence of neutrophils (MPO+) and M1-macrophages (CD68+), causing secondary alteration and massive necrosis in the peri-implant area in a week. This reaction was also accompanied by systemic changes in visceral organs affecting animals' survival after seven days of the experiment. In contrast, S2 300 V implantation was associated with focal lymphohistiocytic infiltration and granulation tissue formation, defining a more favorable outcome. This reaction was associated with the prevalence of M2-macrophages (CD163+) and high density of αSMA+ myofibroblasts, implying a resolution of inflammation and effective tissue repair at the site of the implantation. At 30 days, no remnants of S2 300 V implants were found, suggesting complete resorption with minor histological changes in peri-implant tissues. In conclusion, Ca(OH)2-contained silicate-based solution allows generating biocompatible coating reducing toxicity and immunogenicity with appropriate degradation properties that make it a promising candidate for medical applications.

13.
Proc Inst Mech Eng H ; : 9544119231178477, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37300487

ABSTRACT

This novel experimental work aims to bring further knowledge of frictional performance of common barrier products used in the treatment of incontinence-associated dermatitis and determine how the skin-pad interface changes when a treatment is applied to the skin. Key data is reported and there is an in-depth analysis into friction profiles which reveals great differences between how different skin-pad tribosystems operate when exposed to commercially available barrier treatments. In a wet-pad state Barrier cream A (3M™ Cavilon™ Barrier cream) reduced friction and had much lower dynamic and static coefficients of friction than the other barrier treatments (Barrier cream B (Sorbaderm Barrier cream) and the Barrier spray C (Sorbaderm Barrier spray)). Barrier cream A provided stable friction coefficients in reciprocating sliding, whereas the other treatments, and untreated skin, did not display this unique characteristic. The barrier spray gave rise to high static friction coefficients and exhibited the most stick-slip. All three candidate barrier protection products were found to reduce directional differences in the static coefficient of friction: indicative of reduced shear loading. Knowledge of the desirable frictional properties would drive innovation in product development, and benefit companies, clinicians and users.

14.
Bioeng Transl Med ; 8(2): e10396, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925677

ABSTRACT

Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative technological application for the future. The electrically driven actuator does not require bulky pneumatic elements (such as conventional intra-aortic balloon pumps) and conforms tightly to the aorta thanks to the manufacturing method presented here. In this study, the proposed DEA-based device replaces a section of the aorta and acts as a counterpulsation device. The feasibility and validation of in vivo implantation of the device into the descending aorta in a porcine model, and the level of support provided to the heart are investigated. Additionally, the influence of the activation profile and delay compared to the start of systole is studied. We demonstrate that an activation of the DEA just before the start of systole (30 ms at 100 bpm) and deactivation just after the start of diastole (0-30 ms) leads to an optimal assistance of the heart with a maximum energy provided by the DEA. The end-diastolic and left ventricular pressures were lowered by up to 5% and 1%, respectively, compared to baseline. The early diastolic pressure was augmented in average by up to 2%.

15.
Comb Chem High Throughput Screen ; 26(13): 2345-2357, 2023.
Article in English | MEDLINE | ID: mdl-36733243

ABSTRACT

BACKGROUND AND AIM: To explore the possible mechanism of Dachaihu Decoction (DCHD) in the treatment of AP, and use in vivo experiments to verify. METHODS: The targets and active ingredients of DCHD in the treatment of AP were obtained through network pharmacology, and the preliminary verification was carried out by molecular docking. Caerulein was used to develop the AP rat model. H&E staining was performed to observe variations in pancreatic tissue. Western blot and RT-qPCR were conducted to evaluate the associated proteins and mRNA. RESULTS: The network pharmacology and molecular docking results showed that the key targets (EGFR, TNF, SRC, VEGFA and CTNNB1) and key active components (beta-sitosterol, stigmasterol, baicalein, quercetin, and kaempferol) of DCHD in the treatment of AP had good binding. H&E staining revealed that rat pancreatic tissues considerably damaged post caerulein intervention, and it has also been suggested that DCHD ameliorates damage to pancreatic tissue. Simultaneously, EGFR, TNF, SRC, VEGFA protein, and mRNA expression levels were increased in the model group compared to the blank group (P < 0.01), whereas CTNNB1 expression was found to be decreased in the model group (P < 0.01). Compared with the model group, the protein expression levels of EGFR, TNF, SRC, and VEGFA in the treatment group were down-regulated (P < 0.01), and CTNNB1 was up-regulated (P < 0.05). CONCLUSION: DCHD protects pancreatic tissues and improves symptoms in AP rats by upregulating CTNNB1 protein and mRNA while inhibiting EGFR, TNF, SRC, and VEGFA protein and mRNA expression.


Subject(s)
Drugs, Chinese Herbal , Pancreatitis , Rats , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Molecular Docking Simulation , Artificial Intelligence , Ceruletide/therapeutic use , Acute Disease , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , ErbB Receptors
16.
Microbiol Spectr ; : e0308222, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36744908

ABSTRACT

Black root rot disease of Cicer arietinum L. is accountable for substantial loss in chickpea production worldwide. Endophytic Bacillus siamensis CNE6 has previously shown multifaceted plant growth-promoting, broad-spectrum antifungal, and chickpea plant-colonizing potential. In the present study, the strain Bacillus siamensis CNE6 was used for controlling black root rot disease caused by Fusarium solani CRP1 in chickpea. CNE6 showed strong antagonistic potential against CRP1 both in vivo and in vitro. Scanning electron microscopic studies indicated cellular deformation of CRP1 due to production of ß-glucanase, protease, and other secondary metabolites. A total of five compounds were detected from the cell-free supernatant (CFS) of the ethyl acetate (EA) fraction of CNE6 through gas chromatography-mass spectrometry analysis. A confocal microscopic study demonstrated strong inhibition of biofilm formation of the pathogen CRP1 by the EA fraction of CFS of CNE6. Molecular docking analysis revealed that one compound, (2E)-6-methoxy-2-[(4-methoxyphenyl)methylidene]-2,3-dihydro-1-benzofuran-3-one, may inhibit the activity of lanosterol 14-alpha demethylase, which is involved in ergosterol biosynthesis and beta-tubulin assembling. In vivo experiments also showed the efficacy of CNE6 for increasing chickpea growth as well as upregulation of four defense genes (CHI1, PAMP, PR2B, and TF1082) upon pathogenic challenge. Thus, our results strongly suggest a positive role for CNE6 as a prospective biocontrol agent for combating Fusarium solani in chickpea. IMPORTANCE The present work was undertaken to explore an effective biocontrol agent against the destructive black root rot disease of chickpea. We have used an efficient bacterial endophyte, CNE6, which can colonize in the chickpea root system, produce secondary metabolites and enzymes to degrade pathogenic cellular integrity, inhibit pathogenic establishment by rupturing biofilm formation, and induce host immunity upon treatment. Interaction of the bacterial metabolite was also observed with lanosterol 14-alpha demethylase, which is an important component in fungal membrane functioning. Being an endophyte, Bacillus siamensis CNE6 fulfills a suitable criterion as a biocontrol agent to control black root rot disease in chickpea and has huge prospects for use commercially.

17.
Toxicology ; 488: 153460, 2023 04.
Article in English | MEDLINE | ID: mdl-36796712

ABSTRACT

Cannabidiol (CBD) and cannabigerol (CBG) are the two main non-psychotropic phytocannabinoids with high application potential in drug development. Both substances are redox-active and are intensively investigated for their cytoprotective and antioxidant action in vitro. In this study, we focused on an in vivo safety evaluation and the effect of CBD and CBG on the redox status in rats in a 90-d experiment. The substances were administered orogastrically in a dose of 0.66 mg synthetic CBD or 0.66 mg/1.33 mg CBG/kg/day. CBD produced no changes in the red or white blood count or biochemical blood parameters in comparison to the control. No deviations in the morphology or histology of the gastrointestinal tract and liver were observed. After 90 d of CBD exposure, a significant improvement in redox status was found in the blood plasma and liver. The concentration of malondialdehyde and carbonylated proteins was reduced compared to the control. In contrast to CBD, total oxidative stress was significantly increased and this was accompanied by an elevated level of malondialdehyde and carbonylated proteins in CBG-treated animals. Hepatotoxic (regressive changes) manifestations, disruption in white cell count, and alterations in the ALT activity, level of creatinine and ionized calcium were also found in CBG-treated animals. Based on liquid chromatography-mass spectrometry analysis, CBD/CBG accumulated in rat tissues (in the liver, brain, muscle, heart, kidney and skin) at a low ng level per gram. Both CBD and CBG molecular structures include a resorcinol moiety. In CBG, there is an extra dimethyloctadienyl structural pattern, which is most likely responsible for the disruption to the redox status and hepatic environment. The results are valuable to further investigation of the effects of CBD on redox status and should contribute towards opening up critical discussion on the applicability of other non-psychotropic cannabinoids.


Subject(s)
Cannabidiol , Cannabinoids , Rats , Animals , Cannabidiol/toxicity , Cannabinoids/toxicity , Calcium , Oxidation-Reduction
18.
Methods Mol Biol ; 2610: 67-73, 2023.
Article in English | MEDLINE | ID: mdl-36534282

ABSTRACT

White spot syndrome virus (WSSV), an enveloped double-stranded DNA virus, is the causative agent of white spot syndrome (WSS), which has been linked to cultured shrimp mass mortality in many countries. Therefore, the development of anti-WSSV agents is among the top priorities of the aquaculture sector. Here, we describe the preparation of polyamine-modified carbon quantum dots (polyamine CQDs) for the treatment of WSSV. Moreover, in vivo experiments were conducted in shrimp to confirm the anti-WSSV effect of the proposed CQD-based strategy.


Subject(s)
Penaeidae , Quantum Dots , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , Carbon , Polyamines/pharmacology
19.
Forensic Toxicol ; 40(1): 49-63, 2022 01.
Article in English | MEDLINE | ID: mdl-36454484

ABSTRACT

OBJECTIVE: About 30% of all nanoparticle products contain silver nanoparticles (AgNPs). With the increasing use of AgNPs in industry and medicine, concerns about the adverse effects on the environment, and the possible toxicity of these particles to primary cells and towards organs such as the brain and nervous system increased. In this paper, the toxicity of AgNPs in neurons and brain of animal models was investigated by a systematic review and meta-analysis. METHODS: The full texts of 26 relevant studies were reviewed and analyzed. Data from nine separate experiments in five articles were analyzed by calculating the standardized mean differences between viability of treated animals and untreated groups. Subgroup analysis was conducted. In addition, a systematic review provided a complete, exhaustive summary of all articles. RESULTS: The results of the meta-analysis showed that AgNPs are able to cause neuronal death after entering the brain (standardized mean difference (SMD) = 2.87; 95% confidence interval (CI) 2.1-3.61; p < 0.001). AgNPs sized smaller or larger than 10 nm could both cause neuronal cell death. This effect could be observed for a long time (up to 6 months). Neurons from embryonic animals whose mothers had been exposed to AgNPs during pregnancy were affected as much as animals that were themselves exposed to AgNPs. Toxic effects of AgNPs on memory and cognitive function were also observed. Studies have shown that inflammation and increased oxidative stress followed by apoptosis are likely to be the main mechanisms of AgNPs toxicity. CONCLUSION: AgNPs can enter the brain with a long half-life and it can cause neuronal death after entering the brain. AgNPs can manifest proinflammatory cascades in the CNS and BBB. Some toxic effects were detected in the cerebral cortex, hypothalamus, hippocampus and others. Studies have shown that inflammation and increased oxidative stress lead to apoptosis, the main mechanism of AgNPs neurotoxicity, which can be caused by an increase in silver ions from AgNPs.


Subject(s)
Metal Nanoparticles , Neurotoxicity Syndromes , Animals , Female , Pregnancy , Silver/toxicity , Metal Nanoparticles/toxicity , Neurotoxicity Syndromes/etiology , Brain , Inflammation
20.
Lasers Med Sci ; 38(1): 26, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36574038

ABSTRACT

Laser therapy has become the golden standard of port wine stain (PWS), but complete clearance of resistant PWSs is still difficult. The application of photodynamic therapy (PDT) in the treatment of PWS shows potential in clinical practice, especially for large-area and deep lesions. In this work, in vivo animal experimental investigation on the coupling effect of PDT with multi-pulse laser (MPL) irradiation on the treatment of PWS was conducted by using a dorsal skin window chamber model. Through visualization of the thermal response of blood vessels and damage evaluation, it is found that the combination of PDT with MPL results in 96.2% more vascular injury than PDT alone and 90% more than MPL alone, thus reducing side effects such as purpura after treatment. The combined therapy also has the benefit of large treatment area, uniform fading effect, shortened light duration, and reduced photosensitizer admit.


Subject(s)
Photochemotherapy , Port-Wine Stain , Animals , Port-Wine Stain/drug therapy , Photothermal Therapy , Skin/radiation effects , Photosensitizing Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL