Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Emerg Microbes Infect ; 13(1): 2322649, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38431850

ABSTRACT

Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.


Subject(s)
Amphotericin B , Antifungal Agents , Candidiasis , Animals , Mice , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida auris , Lansoprazole/pharmacology , Respiration , Cytochromes
2.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298530

ABSTRACT

The ongoing COVID-19 pandemic highlights the urgent need for effective antiviral agents and vaccines. Drug repositioning, which involves modifying existing drugs, offers a promising approach for expediting the development of novel therapeutics. In this study, we developed a new drug, MDB-MDB-601a-NM, by modifying the existing drug nafamostat (NM) with the incorporation of glycyrrhizic acid (GA). We assessed the pharmacokinetic profiles of MDB-601a-NM and nafamostat in Sprague-Dawley rats, revealing rapid clearance of nafamostat and sustained drug concentration of MDB-601a-NM after subcutaneous administration. Single-dose toxicity studies showed potential toxicity and persistent swelling at the injection site with high-dose administration of MDB-601a-NM. Furthermore, we evaluated the efficacy of MDB-601a-NM in protecting against SARS-CoV-2 infection using the K18 hACE-2 transgenic mouse model. Mice treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM exhibited improved protectivity in terms of weight loss and survival rates compared to the nafamostat-treated group. Histopathological analysis revealed dose-dependent improvements in histopathological changes and enhanced inhibitory efficacy in MDB-601a-NM-treated groups. Notably, no viral replication was detected in the brain tissue when mice were treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM. Our developed MDB-601a-NM, a modified Nafamostat with glycyrrhizic acid, shows improved protectivity against SARS-CoV-2 infection. Its sustained drug concentration after subcutaneous administration and dose-dependent improvements makes it a promising therapeutic option.


Subject(s)
COVID-19 , SARS-CoV-2 , Rats , Humans , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Pandemics , Disease Models, Animal , Rats, Sprague-Dawley
3.
Antiviral Res ; 214: 105607, 2023 06.
Article in English | MEDLINE | ID: mdl-37088168

ABSTRACT

Zika virus (ZIKV) infection is associated with the birth defect microcephaly and Guillain-Barré syndrome in adults. There is no approved vaccine or specific antiviral agent against ZIKV. ZFD-10, a novel structural skeleton of 1H-pyridazino[4,5-b]indol-4(5H)-one, was firstly synthesized and discovered to be a potent anti-ZIKV inhibitor with very low cytotoxicity. ZFD-10's anti-ZIKV potency is independent of cell lines and ZFD-10 mainly targets the post-entry stages of ZIKV life cycle. Time-of-addition and time-of-withdrawal assays showed that 10 µM ZFD-10 displayed the ability to decrease mainly at the RNA level and weakly the viral progeny particle load. Furthermore, ZFD-10 could protect ZIKV NS5 from thermal unfolding and aggregation and increase the Tagg value of ZIKV NS5 protein from 44.6 to 49.3 °C, while ZFD-10 dose-dependently inhibits ZIKV NS5 RdRp activity using in vitro RNA polymerase assays. Molecular docking study suggests that ZFD-10 affects RdRp enzymatic function through interfering with the fingers and thumb subdomains. These results supported that ZFD-10's cell-based anti-ZIKV activity is related to its anti-RdRp activity of ZIKV NS5. The in vivo anti-ZIKV study shows that the middle-dose (4.77 mg/kg/d) of ZFD-10 protected mice from ZIKV infection and the viral loads of the blood, liver, kidney and brain in the middle-dose and high-dose (9.54 mg/kg/d) were significantly reduced compared to those of the ZIKV control. These results confirm that ZFD-10 has a certain antiviral effect against ZIKV infection in vivo.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus Infection/drug therapy , Molecular Docking Simulation , Protein Binding , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Viral Nonstructural Proteins/genetics
4.
Front Immunol ; 14: 1098461, 2023.
Article in English | MEDLINE | ID: mdl-36936979

ABSTRACT

The SARS-CoV-2 coronavirus, which causes a respiratory disease called COVID-19, has been declared a pandemic by the World Health Organization (WHO) and is still ongoing. Vaccination is the most important strategy to end the pandemic. Several vaccines have been approved, as evidenced by the ongoing global pandemic, but the pandemic is far from over and no fully effective vaccine is yet available. One of the most critical steps in vaccine development is the selection of appropriate antigens and their proper introduction into the immune system. Therefore, in this study, we developed and evaluated two proposed vaccines composed of single and multiple SARS-CoV-2 polypeptides derived from the spike protein, namely, vaccine A and vaccine B, respectively. The polypeptides were validated by the sera of COVID-19-vaccinated individuals and/or naturally infected COVID-19 patients to shortlist the starting pool of antigens followed by in vivo vaccination to hACE2 transgenic mice. The spike multiple polypeptide vaccine (vaccine B) was more potent to reduce the pathogenesis of organs, resulting in higher protection against the SARS-CoV-2 infection.


Subject(s)
COVID-19 , Virus Diseases , Animals , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Disease Models, Animal , Mice, Transgenic , Peptides
5.
Drug Deliv ; 28(1): 390-399, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33594917

ABSTRACT

This study was designed to establish the composition of wound bandages based on Cerium nanoparticle (CeNP)-loaded polyvinyl alcohol (PVA) nanogels. The CeNP nanogel (Ce-nGel) was fabricated by the fructose-mediated reduction of Cerium oxide solutions within the PVA matrix. The influences of different experimental limitations on PVA nanogel formations were examined. The nanogel particle sizes were evaluated by transmission electron microscopy and determined to range from ∼10 to 50 nm. Additionally, glycerol was added to the Ce-nGels, and the resulting compositions (Ce-nGel-Glu) were coated on cotton fabrics to generate the wound bandaging composite. The cumulative drug release profile of the Cerium from the bandage was found to be ∼38% of the total loading after two days. Additionally, antibacterial efficacy was developed for Gam positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 24 days. In contrast to the untreated wounds, rapid healing was perceived in the Ce-nGel-Glu-treated wound with less damage. These findings indicate that Ce-nGel-Glu-based bandaging materials could be a potential candidate for wound healing applications in the future.


Subject(s)
Anti-Bacterial Agents/chemistry , Cerium/chemistry , Nanogels/chemistry , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Bandages , Chitosan/chemistry , Drug Liberation/drug effects , Male , Mice , Mice, Inbred BALB C , Particle Size
6.
Methods Protoc ; 4(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33526760

ABSTRACT

Patients with epithelial metaplasias have an increased risk of developing malignancies. In Barrett's esophagus, neo-columnar epithelium develops proximal to the squamous-columnar junction (SCJ) in the esophagus as the result of prolonged exposure to bile and acid reflux. Patients require lifetime periodic surveillance, due to lack of effective eradication therapies. The shortage of innovative treatment options is mostly attributable to the paucity of adequate in vivo models of neo-columnar epithelium regeneration. This protocol describes the generation of a cryoablation model to study regeneration of neo-epithelia at the SCJ. Cryoablation of the columnar and squamous mucosa at the SCJ was achieved through local application of liquid N2O in wild-type and reporter mice in combination with acid suppression. Acid suppression alone, showed restoration of the SCJ with normal histological features of both the neo-columnar and neo-squamous epithelium within 14 days. As a proof of principle, mice were treated with mNoggin, an inhibitor of bone morphogenetic proteins (BMPs), which are involved in the development of columnar epithelia. Local application of mNoggin to the ablated area at the SCJ significantly reduced the development of the neo-columnar mucosa. Although this model does not faithfully recapitulate the exact characteristics of Barrett's esophagus, it is a well-suited tool to study the mechanisms of therapeutic inhibition of neo-columnar regeneration. It therefore represents an efficient and easy platform to test novel pharmacological therapies for treatment of neo-epithelial lesions at the SCJ.

7.
Drug Deliv ; 28(1): 285-292, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33501867

ABSTRACT

In relieving local pains, lidocaine, one of ester-type local anesthetics, has been used. To develop the lidocaine membranes of enhanced local anesthetic effects, we have designed to establish the composition of wound dressings based on lidocaine chloride (LCH) (anesthetic drug)-loaded chitosan (CS)/polymyxin B sulfate (PMB). The LCH membranes (LCH-CS/PMB) was fabricated by the LCH oxide solutions within the CS/PMB matrix. The influences of different experimental limitations on CS/PMB membrane formations were examined. The double membrane particle sizes were evaluated by scanning electron microscopy (HR-SEM). Additionally, antibacterial efficacy was developed for gram-positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 16 days. In contrast to the untreated wounds, rapid healing was perceived in the LCH-CS/PMB-treated wound with less damaging. These findings indicate that LCH-CS/PMB-based bandaging materials could be a potential innovative biomaterial for tissue repair and regeneration for wound healing applications in an animal model.


Subject(s)
Anesthetics, Local/pharmacology , Anti-Bacterial Agents/pharmacology , Chitosan , Guided Tissue Regeneration , Lidocaine/pharmacology , Nanoparticles , Polymyxin B/pharmacology , Wound Healing/drug effects , Anesthetics, Local/administration & dosage , Animals , Anti-Bacterial Agents/administration & dosage , Bandages , Biocompatible Materials , In Vitro Techniques , Lidocaine/administration & dosage , Mechanical Tests , Mice , Polymyxin B/administration & dosage , Tissue Scaffolds
8.
Gut Microbes ; 12(1): 1847976, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33258388

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory condition linked to intestinal microbial dysbiosis, including the expansion of E. coli strains related to extra-intestinal pathogenic E. coli. These "pathobionts" exhibit pathogenic properties, but their potential to promote UC is unclear due to the lack of relevant animal models. Here, we established a mouse model using a representative UC pathobiont strain (p19A), and mice lacking single immunoglobulin and toll-interleukin 1 receptor domain (SIGIRR), a deficiency increasing susceptibility to gut infections. Strain p19A was found to adhere to the cecal mucosa of Sigirr -/- mice, causing modest inflammation. Moreover, it dramatically worsened dextran sodium sulfate-induced colitis. This potentiation was attenuated using a p19A strain lacking α-hemolysin genes, or when we targeted pathobiont adherence using a p19A strain lacking the adhesin FimH, or following treatment with FimH antagonists. Thus, UC pathobionts adhere to the intestinal mucosa, and worsen the course of colitis in susceptible hosts.


Subject(s)
Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Escherichia coli/growth & development , Gastrointestinal Microbiome , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Animals , Colitis, Ulcerative/immunology , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Genetic Predisposition to Disease , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology
9.
J Alzheimers Dis ; 76(4): 1179-1198, 2020.
Article in English | MEDLINE | ID: mdl-32597813

ABSTRACT

While prevailing evidence supports that the amyloid cascade hypothesis is a key component of Alzheimer's disease (AD) pathology, many recent studies indicate that the vascular system is also a major contributor to disease progression. Vascular dysfunction and reduced cerebral blood flow (CBF) occur prior to the accumulation and aggregation of amyloid-ß (Aß) plaques and hyperphosphorylated tau tangles. Although research has predominantly focused on the cellular processes involved with Aß-mediated neurodegeneration, effects of Aß on CBF and neurovascular coupling are becoming more evident. This review will describe AD vascular disturbances as they relate to Aß, including chronic cerebral hypoperfusion, hypertension, altered neurovascular coupling, and deterioration of the blood-brain barrier. In addition, we will describe recent findings about the relationship between these vascular defects and Aß accumulation with emphasis on in vivo studies utilizing rodent AD models.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cerebral Amyloid Angiopathy/physiopathology , Alzheimer Disease/pathology , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/pathology , Cerebral Amyloid Angiopathy/pathology , Cerebrovascular Circulation/physiology , Humans
10.
Cell Rep ; 29(6): 1728-1738.e9, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31693908

ABSTRACT

Mitochondria harbor specialized ribosomes (mitoribosomes) necessary for the synthesis of key membrane proteins of the oxidative phosphorylation (OXPHOS) machinery located in the mitochondrial inner membrane. To date, no animal model exists to study mitoribosome composition and mitochondrial translation coordination in mammals in vivo. Here, we create MitoRibo-Tag mice as a tool enabling affinity purification and proteomics analyses of mitoribosomes and their interactome in different tissues. We also define the composition of an assembly intermediate formed in the absence of MTERF4, necessary for a late step in mitoribosomal biogenesis. We identify the orphan protein PUSL1, which interacts with a large subunit assembly intermediate, and demonstrate that it is an inner-membrane-associated mitochondrial matrix protein required for efficient mitochondrial translation. This work establishes MitoRibo-Tag mice as a powerful tool to study mitoribosomes in vivo, enabling future studies on the mitoribosome interactome under different physiological states, as well as in disease and aging.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Ribosomes/metabolism , Protein Biosynthesis , Ribosomal Proteins/metabolism , Transcription Factors/metabolism , Animals , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Heart/physiology , Kidney/metabolism , Liver/metabolism , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondrial Proteins/genetics , Myocardium/metabolism , Protein Interaction Maps , Proteome/metabolism , Proteomics , Ribosomal Proteins/genetics , Transcription Factors/genetics
11.
Biomed Pharmacother ; 118: 109281, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31377469

ABSTRACT

In 2018 there were over 1.8 million new cases worldwide of colorectal cancer and relapses after clinical treatments. Many studies ascribe the risk of the appearance of this cancer to the Western life style : a sedentary life, obesity, and low -fiber, high -fat diets can promote the onset of disease. Several studies have shown supplement phytochemicals to have an inhibiting effect on the growth of various cancers through the activation of apoptosis. Our goal was to prove the effectiveness of a natural compound in the combined therapy of colorectal cancer. Trigno M supplement was an optimal candidate as anticancer product for its high concentrations of phenolic acids, flavonoids and anthocyanins. Our work showed the antitumor activity of Trigno M, extract of Prunus spinosa drupes combined with the nutraceutical activator complex (NAC), in 2D, 3D and in vivo colorectal cancer models. The cellular model we used both in vitro and in vivo was the HCT116 cell line, particularly suitable for engraftment after inoculation in mice. Trigno M inhibited the growth and colony formation of HCT116 cells (35%) as compared to the chemotherapy treatment with 5-fluorouracil (80%) used in clinical therapy. The reduction of the morphological dimensions in the spheroid cells after Trigno M, was compared with 5-fluorouracil demonstrating the efficacy of the Trigno M compound also in 3D models. Flow cytometric analysis on 3D cells showed a significant increase in the apoptotic cell fraction after Trigno M treatment (44.8%) and a low level of necrotic fraction (6.7%) as compared with control cells. Trigno M and 5-fluorouracil induced the apoptosis in a comparable percentage. Monotherapy with Trigno M in severely immunodeficient mice, carrying colon rectal cancer xenografts, significantly reduced tumor growth. The histopatological analysis of the ectopic tumors showed a lower level of necrosis after Trigno M treatment compared with the control. We conclude that Trigno M is well tolerated by mice, delays colorectal cancer growth in these animals and should be weighed up for integration of the current multi-drug protocols in the treatment of colon carcinoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Models, Biological , Plant Extracts/therapeutic use , Prunus/chemistry , Acetylcysteine/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/ultrastructure , Female , Fluorouracil/pharmacology , HCT116 Cells , Humans , Mice, SCID , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
12.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31331959

ABSTRACT

The soil-dwelling, saprophytic actinomycete Rhodococcus equi is a facultative intracellular pathogen of macrophages and causes severe bronchopneumonia when inhaled by susceptible foals. Standard treatment for R. equi disease is dual-antimicrobial therapy with a macrolide and rifampin. Thoracic ultrasonography and early treatment with antimicrobials prior to the development of clinical signs are used as means of controlling endemic R. equi infection on many farms. Concurrently with the increased use of macrolides and rifampin for chemoprophylaxis and the treatment of subclinically affected foals, a significant increase in the incidence of macrolide- and rifampin-resistant R. equi isolates has been documented. Previously, our laboratory demonstrated decreased fitness of R. equi strains that were resistant to macrolides, rifampin, or both, resulting in impaired in vitro growth in iron-restricted media and in soil. The objective of this study was to examine the effect of macrolide and/or rifampin resistance on intracellular replication of R. equi in equine pulmonary macrophages and in an in vivo mouse infection model in the presence and absence of antibiotics. In equine macrophages, the macrolide-resistant strain did not increase in bacterial numbers over time and the dual macrolide- and rifampin-resistant strain exhibited decreased proliferation compared to the susceptible isolate. In the mouse model, in the absence of antibiotics, the susceptible R. equi isolate outcompeted the macrolide- or rifampin-resistant strains.


Subject(s)
Actinomycetales Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Clarithromycin/pharmacology , Macrophages, Alveolar/microbiology , Rhodococcus equi/drug effects , Rifampin/pharmacology , Actinomycetales Infections/immunology , Actinomycetales Infections/microbiology , Animals , Colony Count, Microbial , Drug Resistance, Bacterial , Genetic Fitness/drug effects , Genetic Fitness/physiology , Horses , Liver/drug effects , Liver/microbiology , Lung/drug effects , Lung/microbiology , Macrophages, Alveolar/drug effects , Male , Mice , Mice, Nude , Microbial Sensitivity Tests , Primary Cell Culture , Rhodococcus equi/physiology , Spleen/drug effects , Spleen/microbiology
13.
Article in English | MEDLINE | ID: mdl-30670419

ABSTRACT

WCK 5222 is a combination of cefepime and the high-affinity PBP2-binding ß-lactam enhancer zidebactam. The cefepime-zidebactam combination is active against multidrug-resistant Gram-negative bacteria, including carbapenemase-expressing Acinetobacter baumannii The mechanism of action of the combination involves concurrent multiple penicillin binding protein inhibition, leading to the enhanced bactericidal action of cefepime. The aim of the present study was to assess the impact of the zidebactam-mediated enhanced in vitro bactericidal action in modulating the percentage of the time that the free drug concentration remains above the MIC (percent fT>MIC) for cefepime required for the in vivo killing of A. baumannii Cefepime and cefepime-zidebactam MICs were comparable and ranged from 2 to 16 mg/liter for the A. baumannii strains (n = 5) employed in the study. Time-kill studies revealed the improved killing of these strains by the cefepime-zidebactam combination compared to that by the constituents alone. Employing a neutropenic mouse lung infection model, exposure-response analyses for all the A. baumannii strains showed that the cefepime fT>MIC required for 1-log10 kill was 38.9%. In the presence of a noneffective dose of zidebactam, the cefepime fT>MIC requirement dropped significantly to 15.5%, but it still rendered a 1-log10 kill effect. Thus, zidebactam mediated the improvement in cefepime's bactericidal effect observed in time-kill studies, manifested in vivo through the lowering of cefepime's pharmacodynamic requirement. This is a first-ever study demonstrating a ß-lactam enhancer role of zidebactam that helps augment the in vivo activity of cefepime by reducing the magnitude of its pharmacodynamically relevant exposures against A. baumannii.


Subject(s)
Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Cefepime/pharmacology , Cephalosporins/pharmacology , Cyclooctanes/pharmacology , Piperidines/pharmacology , Respiratory Tract Infections/drug therapy , Acinetobacter Infections/microbiology , Animals , Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/pharmacokinetics , Bacterial Proteins/biosynthesis , Cefepime/pharmacokinetics , Cephalosporins/pharmacokinetics , Cyclooctanes/pharmacokinetics , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Drug Synergism , Lung/microbiology , Lung/pathology , Mice , Microbial Sensitivity Tests , Piperidines/pharmacokinetics , Respiratory Tract Infections/microbiology , beta-Lactamases/biosynthesis
14.
Front Pharmacol ; 9: 489, 2018.
Article in English | MEDLINE | ID: mdl-29867493

ABSTRACT

Streptococcus suis is a major swine pathogen, an emerging zoonotic agent responsible for meningitis, endocarditis and septicaemia followed by deafness in humans. The development of antimicrobial resistance in S. suis increases the risk for therapeutic failure in both animals and humans. In this study, we report the synergism of combination therapy against multi-resistant S. suis isolates from swine. Twelve antibiotic profiles were determined against 11 S. suis strains. To investigate their synergistic/antagonistic activity, checkerboard assay was performed for all the possible combinations. In-vitro killing curves and in-vivo treatment trials were used to confirm the synergistic activity of special combinations against S. suis dominant clones. In this study, 11 S. suis isolates were highly resistant to erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tetracycline with ratios of 80-100%, and the resistance percentages to enrofloxacin, florfenicol, and spectinomycin were ~50%. The checkerboard data identified two combination regimens, ampicillin plus apramycin and tiamulin plus spectinomycin which gave the greatest level of synergism against the S. suis strains. In-vitro kill-curves showed a bacterial reduction of over 3-logCFU with the use of combination treatments, whilst the application of mono-therapies achieve less than a 2-logCFU cell killing. In-vivo models confirm that administration of these two combinations significantly reduced the number of bacterial cells after 24 h of treatment. In conclusions, the combinations of ampicillin plus apramycin and tiamulin plus spectinomycin showed the greatest synergism and may be potential strategies for treatment of multi-resistant S. suis in animal.

15.
J Biophotonics ; 11(10): e201700337, 2018 10.
Article in English | MEDLINE | ID: mdl-29752868

ABSTRACT

Cutaneous radiation injury (CRI) is a skin injury caused by high-dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and 2-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination.


Subject(s)
Microscopy, Confocal , Photons , Radiation Injuries, Experimental/diagnostic imaging , Skin/radiation effects , Animals , Disease Models, Animal , Early Diagnosis , Male , Mice
16.
Eur J Neurosci ; 46(5): 2096-2107, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28700113

ABSTRACT

We have recently demonstrated that endothelin (ET) is functionally coupled to Nax , a Na+ concentration-sensitive Na+ channel for lactate release via ET receptor type B (ETB R) and is involved in peripheral nerve regeneration in a sciatic nerve transection-regeneration mouse model. Nax is known to interact directly with Na+ /K+ -ATPase, leading to lactate production in the brain. To investigate the role of Na+ /K+ -ATPase in peripheral nerve regeneration, in this study, we applied ouabain, a Na+ /K+ -ATPase inhibitor, to the cut site for 4 weeks with an osmotic pump. While functional recovery and nerve reinnervation to the toe started at 5 weeks after axotomy and were completed by 7 weeks, ouabain delayed them by 2 weeks. The delay by ouabain was improved by lactate, and its effect was blocked by α-cyano-4-hydroxy-cinnamic acid (CIN), a broad monocarboxylate transporter (MCT) inhibitor. In primary cultures of dorsal root ganglia, neurite outgrowth of neurons and lactate release into the culture medium was inhibited by ouabain. Conversely, lactate enhanced the neurite outgrowth, which was blocked by CIN, but not by AR-C155858, a MCT1/2-selective inhibitor. ET-1 and ET-3 increased neurite outgrowth of neurons, which was attenuated by an ETB R antagonist, ouabain and 2 protein kinase C inhibitors. Taken together with the finding that ETB R was expressed in Schwann cells, these results demonstrate that ET enhanced neurite outgrowth of neurons mediated by Na+ /K+ -ATPase via ETB R in Schwann cells. This study suggests that Na+ /K+ -ATPase coupled to the ET-ETB R system plays a critical role in peripheral nerve regeneration via lactate signalling.


Subject(s)
Lactic Acid/metabolism , Nerve Regeneration/physiology , Receptor, Endothelin B/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Cells, Cultured , Endothelin B Receptor Antagonists/pharmacology , Endothelin-1/metabolism , Endothelin-3/metabolism , Enzyme Inhibitors/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Male , Mice, Inbred C57BL/metabolism , Mice, Transgenic , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Nerve Growth Factor/metabolism , Nerve Regeneration/drug effects , Neuronal Outgrowth/drug effects , Neuronal Outgrowth/physiology , Protein Kinase C/metabolism , RNA, Messenger/metabolism , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
17.
Oncotarget ; 8(24): 39356-39366, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28454118

ABSTRACT

Therapeutic antibodies are effective for tumor immunotherapy and exhibit prominent clinical effects. All approved antibody therapeutics utilize IgG as the molecular format. Antibody-dependent cell-mediated cytotoxicity (ADCC) is a key mechanism for tumor cell killing by antibodies. For IgG antibodies, ADCC depends on FcγR-expressing cells, such as natural killer (NK) cells. However, in patients with a high tumor burden, antibody therapeutics may lose efficacy owing to exhaustion of FcγR-expressing effector cells as well as the inhibitory effects of certain FcγRs on effector cells. To achieve more potent effector functions, we engineered an anti-CD20 antibody to contain both IgG Fc and IgA Fc domains. These engineered antibodies interacted with both IgG and IgA Fc receptors (FcγR and FcαR) and recruited a broader range of effector cells, including monocytes, macrophages, neutrophils, and NK cells, thereby enhancing antibody-dependent cellular phagocytosis. Using transgenic mice expressing the FcαRI (CD89) in macrophages, we demonstrated that recombinant antibodies bearing the chimeric IgG and IgA Fc exhibited potent in vivo antitumor activity. Additionally, in a short-term peritoneal model using CD20-transfected LLC target cells, the in vivo cytotoxic activity of hybrid recombinant antibodies was mediated by macrophages with significant reduction in the absence of FcαRI. Our findings supported targeting of FcαRI on monocytes and macrophages for improved tumor immunotherapy.


Subject(s)
Antigens, CD/metabolism , Macrophages/metabolism , Monocytes/metabolism , Neoplasms/metabolism , Receptors, Fc/metabolism , Receptors, IgG/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Biomarkers , Cell Line, Tumor , Disease Models, Animal , Humans , Immunotherapy , Macrophages/immunology , Mice , Monocytes/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Xenograft Model Antitumor Assays
18.
Front Pharmacol ; 7: 515, 2016.
Article in English | MEDLINE | ID: mdl-28101055

ABSTRACT

A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model.

SELECTION OF CITATIONS
SEARCH DETAIL