Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 44(1): 51-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26714969

ABSTRACT

PURPOSE: To assess if higher-resolution magnetic resonance elastography (MRE) is a technique that can measure the in vivo mechanical properties of brain tissue and is sensitive to early signatures of brain tissue degradation in patients with clinically isolated syndrome (CIS). MATERIALS AND METHODS: Seventeen patients with CIS and 33 controls were investigated by MRE with a 3T MRI scanner. Full-wave field data were acquired at seven drive frequencies from 30 to 60 Hz. The spatially resolved higher-resolution maps of magnitude |G*| and phase angle φ of the complex-valued shear modulus were obtained in addition to springpot model parameters. These parameters were spatially averaged in white matter (WM) and whole-brain regions and correlated with clinical and radiological parameters. RESULTS: Spatially resolved MRE revealed that CIS reduced WM viscoelasticity, independent of imaging markers of multiple sclerosis and clinical scores. |G*| was reduced by 14% in CIS (1.4 ± 0.2 kPa vs. 1.7 ± 0.2 kPa, P < 0.001, 95% confidence interval [CI] [-0.4, -0.1] kPa), while φ (0.66 ± 0.04 vs. 0.67 ± 0.04, P = 0.65, 95% CI [-0.04, 0.02]) remained unaltered. Springpot-based shear elasticity showed only a trend of CIS-related reduction (3.4 ± 0.5 kPa vs. 3.7 ± 0.5 kPa, P = 0.06, 95% CI [-0.6, 0.02] kPa) in the whole brain. CONCLUSION: We demonstrate that CIS leads to significantly reduced elasticity of brain parenchyma, raising the prospect of using MRE as an imaging marker for subtle and diffuse tissue damage in neuroinflammatory diseases. J. Magn. Reson. Imaging 2016;44:51-58.


Subject(s)
Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/physiopathology , Elasticity Imaging Techniques/methods , Epilepsy/pathology , Epilepsy/physiopathology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Adult , Early Diagnosis , Elastic Modulus , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Shear Strength , Stress, Mechanical
2.
NMR Biomed ; 28(11): 1426-32, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26373228

ABSTRACT

The aim of this study was to introduce remote wave excitation for high-resolution cerebral multifrequency MR elastography (mMRE). mMRE of 25-45-Hz drive frequencies by head rocker stimulation was compared with mMRE by remote wave excitation based on a thorax mat in 12 healthy volunteers. Maps of the magnitude |G*| and phase φ of the complex shear modulus were reconstructed using multifrequency dual elasto-visco (MDEV) inversion. After the scan, the subjects and three operators assessed the comfort and convenience of cerebral mMRE using two methods of stimulating the brain. Images were acquired in a coronal view in order to identify anatomical regions along the spinothalamic pathway. In mMRE by remote actuation, all subjects and operators appreciated an increased comfort and simplified procedural set-up. The resulting strain amplitudes in the brain were sufficiently large to analyze using MDEV inversion, and yielded high-resolution viscoelasticity maps which revealed specific anatomical details of brain mechanical properties: |G*| was lowest in the pons (0.97 ± 0.08 kPa) and decreased within the corticospinal tract in the caudal-cranial direction from the crus cerebri (1.64 ± 0.26 kPa) to the capsula interna (1.29 ± 0.14 kPa). By avoiding onerous mechanical stimulation of the head, remote excitation of intracranial shear waves can be used to measure viscoelastic parameters of the brain with high spatial resolution. Therewith, the new mMRE method is suitable for neuroradiological examinations in the clinic.


Subject(s)
Brain/anatomy & histology , Elasticity Imaging Techniques/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Physical Stimulation/instrumentation , Brain/physiology , Elastic Modulus/physiology , Equipment Design , Equipment Failure Analysis , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Shear Strength/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL