Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137.045
Filter
1.
J Ethnopharmacol ; 336: 118699, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181290

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a serious health-threatening syndrome of intense inflammatory response in the lungs, with progression leading to acute respiratory distress syndrome (ARDS). Dachengqi decoction dispensing granule (DDG) has a pulmonary protective role, but its potential modulatory mechanism to alleviate ALI needs further excavation. AIM OF THE STUDY: This study aims to investigate the effect and potential mechanism of DDG on lipopolysaccharide (LPS)-induced ALI models in vivo and in vitro. MATERIALS AND METHODS: LPS-treated Balb/c mice and BEAS-2B cells were used to construct in vivo and in vitro ALI models, respectively. Hematoxylin-eosin (HE), Wet weight/Dry weight (W/D) calculation of lung tissue, and total protein and Lactic dehydrogenase (LDH) assays in BALF were performed to assess the extent of lung tissue injury and pulmonary edema. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) in BALF, serum, and cell supernatant. The qRT-PCR was used to detect inflammatory factors, Z-DNA binding protein 1 (ZBP1), and receptor-interacting protein kinase 1 (RIPK1) expression in lung tissues and BEAS-2B cells. Double immunofluorescence staining and co-immunoprecipitation were used to detect the relative expression and co-localization of ZBP1 and RIPK1. The effects of LPS and DDG on BEAS-2B cell activity were detected by Cell Counting Kit-8 (CCK-8). Western blot (WB) was performed to analyze the expression of PANoptosis-related proteins in lung tissues and BEAS-2B cells. RESULTS: In vivo, DDG pretreatment could dose-dependently improve the pathological changes of lung tissue in ALI mice, and reduce the W/D ratio of lung, total protein concentration, and LDH content in BALF. In vitro, DDG reversed the inhibitory effect of LPS on BEAS-2B cell viability. Meanwhile, DDG significantly reduced the levels of inflammatory factors in vitro and in vivo. In addition, DDG could inhibit the expression levels of PANoptosis-related proteins, especially the upstream key regulatory molecules ZBP1 and RIPK1. CONCLUSION: DDG could inhibit excessive inflammation and PANoptosis to alleviate LPS-induced ALI, thus possessing good anti-inflammatory and lung-protective effects. This study establishes a theoretical basis for the further development of DDG and provides a new prospect for ALI treatment by targeting PANoptosis.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mice, Inbred BALB C , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Humans , Male , Mice , Cell Line , Lung/drug effects , Lung/pathology , Lung/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Plant Extracts/pharmacology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
Biomaterials ; 312: 122747, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39142219

ABSTRACT

Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.


Subject(s)
Colitis, Ulcerative , Liposomes , Sulfhydryl Compounds , Colitis, Ulcerative/drug therapy , Liposomes/chemistry , Animals , Sulfhydryl Compounds/chemistry , Humans , Nanoparticles/chemistry , Mice , Colon/pathology , Colon/drug effects , Colon/metabolism , Male , Drug Delivery Systems
3.
Biomaterials ; 312: 122760, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39163825

ABSTRACT

Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.


Subject(s)
Arthritis, Rheumatoid , Deoxyglucose , Dexamethasone , Glucose , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Animals , Glucose/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice , Deoxyglucose/pharmacology , Inflammation/drug therapy , Glycolysis/drug effects , Polymers/chemistry , Hyaluronic Acid/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Humans , Cell Proliferation/drug effects
4.
Biomaterials ; 312: 122732, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39088913

ABSTRACT

Fully restoring the lost population of cardiomyocytes and heart function remains the greatest challenge in cardiac repair post myocardial infarction. In this study, a pioneered highly ROS-eliminating hydrogel was designed to enhance miR-19a/b induced cardiomyocyte proliferation by lowering the oxidative stress and continuously releasing miR-19a/b in infarcted myocardium in situ. In vivo lineage tracing revealed that ∼20.47 % of adult cardiomyocytes at the injected sites underwent cell division in MI mice. In MI pig the infarcted size was significantly reduced from 40 % to 18 %, and thereby marked improvement of cardiac function and increased muscle mass. Most importantly, our treatment solved the challenge of animal death--all the treated pigs managed to live until their hearts were harvested at day 50. Therefore, our strategy provides clinical conversion advantages and safety for healing damaged hearts and restoring heart function post MI, which will be a powerful tool to battle cardiovascular diseases in patients.


Subject(s)
Cell Proliferation , MicroRNAs , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Oxidative Stress/drug effects , Mice , Swine , Hydrogels/chemistry , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
5.
Biomaterials ; 313: 122803, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39232334

ABSTRACT

Bacteria-infected wounds pose challenges to healing due to persistent infection and associated damage to nerves and vessels. Although sonodynamic therapy can help kill bacteria, it is limited by the residual oxidative stress, resulting in prolonged inflammation. To tackle these barriers, novel 4 octyl itaconate-coated Li-doped ZnO/PLLA piezoelectric composite microfibers are developed, offering a whole-course "targeted" treatment under ultrasound therapy. The inclusion of Li atoms causes the ZnO lattice distortion and increases the band gap, enhancing the piezoelectric and sonocatalytic properties of the composite microfibers, collaborated by an aligned PLLA conformation design. During the infection and inflammation stages, the piezoelectric microfibers exhibit spatiotemporal-dependent therapeutic effects, swiftly eliminating over 94.2 % of S. aureus within 15 min under sonodynamic therapy. Following this phase, the microfibers capture reactive oxygen species and aid macrophage reprogramming, restoring mitochondrial function, achieving homeostasis, and shortening inflammation cycles. As the wound progresses through the healing stages, bioactive Zn2+ and Li + ions are continuously released, improving cell recruitment, and the piezoelectrical stimulation enhances wound recovery with neuro-vascularization. Compared to commercially available dressings, our microfibers accelerate the closure of rat wounds (Φ = 15 mm) without scarring in 12 days. Overall, this "one stone, four birds" wound management strategy presents a promising avenue for infected wound therapy.


Subject(s)
Ultrasonic Therapy , Wound Healing , Animals , Wound Healing/drug effects , Ultrasonic Therapy/methods , Rats, Sprague-Dawley , Rats , Staphylococcus aureus/drug effects , Zinc Oxide/chemistry , Mice , Electric Stimulation , Male , Staphylococcal Infections/therapy , Polyesters/chemistry , Reactive Oxygen Species/metabolism , Electric Stimulation Therapy/methods , Neovascularization, Physiologic/drug effects
6.
Semina cienc. biol. saude ; 45(2): 113-120, jul./dez. 2024. ilus
Article in Portuguese | LILACS | ID: biblio-1568648

ABSTRACT

A instabilidade de microssatélites é um fenômeno genético caracterizado pela alteração na repetição de sequências de nucleotídeos conhecidas como microssatélites. Esta instabilidade pode ocorrer devido a defeitos nos genes reparadores de DNA, como os genes MLH1, MSH2, MSH6 e PMS2. A inflamação crônica tem sido associada ao desenvolvimento do câncer colorretal. Os genes da instabilidade de microssatélites estão envolvidos na regulação da resposta inflamatória, podendo influenciar a progressão tumoral. Estudos demonstraram que a presença de instabilidade de microssatélites em tumores colorretais está relacionada a uma maior infiltração de células imunes, como linfócitos T, macrófagos e neutrófilos, que podem modular a resposta inflamatória no microambiente tumoral. O estresse oxidativo é caracterizado pelo desequilíbrio entre a produção de espécies reativas de oxigênio e a capacidade antioxidante do organismo e desempenha um papel importante na carcinogênese. Os genes da instabilidade de microssatélites podem influenciar a resposta ao estresse oxidativo, afetando a capacidade das células tumorais de lidar com o dano oxidativo e promovendo a sobrevivência celular. O objetivo deste trabalho consiste na compreensão dos genes envolvidos na instabilidade de microssatélites no câncer colorretal e como eles contribuem para o desenvolvimento da doença, relacionando com processos inflamatórios e estresse oxidativo nas células tumorais. Justifica-se pela necessidade de compreensão das interconexões entre a instabilidade de microssatélites, inflamação e o estresse oxidativo em pacientes com câncer colorretal.


Microsatellite instability is a genetic phenomenon characterized by changes in the repetition of nucleotide sequences known as microsatellites. This instability may occur due to defects in DNA repair genes, such as the MLH1, MSH2, MSH6 and PMS2 genes. Chronic inflammation has been linked to the development of colorectal cancer. Microsatellite instability genes are involved in regulating the inflammatory response and may influence tumor progression. Studies have shown that the presence of microsatellite instability in colorectal tumors is related to a greater infiltration of immune cells, such as T lymphocytes, macrophages and neutrophils, which can modulate the inflammatory response in the tumor microenvironment. Oxidative stress is characterized by the imbalance between the production of reactive oxygen species and the body's antioxidant capacity and plays an important role in carcinogenesis. Microsatellite instability genes can influence the response to oxidative stress, affecting the ability of tumor cells to deal with oxidative damage and promoting cell survival. The objective of this work is to understand the genes involved in microsatellite instability in colorectal cancer and how they contribute to the development of the disease, relating it to inflammatory processes and oxidative stress in tumor cells. It is justified by the need to understand the interconnections between microsatellite instability, inflammation and oxidative stress in patients with colorectal cancer.


Subject(s)
Humans
7.
Mol Ther Oncol ; 32(3): 200849, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39228396

ABSTRACT

Precancerous lesions typically precede gastric cancer (GC), but the molecular mechanisms underlying the transition from these lesions to GC remain unclear. Therefore, it is urgent to understand this transition from precancerous lesions to GC, which is crucial for the early diagnosis and treatment of GC. In this study, we merged multiple single-cell RNA sequencing datasets to investigate the molecular changes in distinct cell types associated with the progression of GC. First, we observed an increasing abundance of immune cells and a decrease in non-immune cells from non-atrophic gastritis to GC. Five immune cell types were significantly enriched in GC compared to precancerous lesions. Moreover, we found that the interleukin (IL)-17 signaling pathway and Th17 cell differentiation were significantly up-regulated in immune cell subsets during GC progression. Some genes in these processes were predominantly expressed at the GC stage, highlighting their potential as diagnostic markers. Furthermore, we validated our findings using bulk RNA sequencing data from The Cancer Genome Atlas and confirmed consistent immune cell changes during GC progression. Our study provides insights into the immune infiltration and signaling pathways involved in the development of GC, contributing to the development of early diagnosis and targeted treatment strategies for this malignancy.

8.
Rev Cardiovasc Med ; 25(8): 294, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39228482

ABSTRACT

Background: The inflammatory response to atherosclerosis is a process that leads to coronary artery disease. Pan-immune-inflammation value (PIV) has emerged as a new and simple biomarker of inflammation. However, studies on the predictive power of PIV for major adverse cardiovascular events (MACE) or the degree of coronary artery stenosis are scarce. We aimed to explore the predictive ability of PIV for MACE and the degree of coronary artery stenosis in patients with ST-segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI) during hospitalization. Methods: This study included 542 patients who were diagnosed with STEMI and who underwent PCI between 2016 and 2023 and whose PIV and other inflammatory markers were measured. Using univariate and multivariate logistic regression analysis, risk variables for MACE following PCI and severe coronary stenosis during hospitalization were assessed to create receiver operating characteristic (ROC) curves and determine the best thresholds for inflammatory markers. Spearman correlation analysis was used to evaluate the correlation of PIV and other inflammatory markers with the Gensini score (GS). Results: Compared with the systemic inflammatory index (SII), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR), the PIV may have greater predictive value in terms of the occurrence of MACE and the degree of coronary stenosis after PCI in hospitalized STEMI patients. The correlation between the PIV and GS was strong. Conclusions: PIV was superior to the SII, PLR, and NLR in predicting inpatient prognosis and severe coronary stenosis after PCI for STEMI patients.

9.
Front Pharmacol ; 15: 1433961, 2024.
Article in English | MEDLINE | ID: mdl-39228517

ABSTRACT

Mitochondria play a significant and varied role in inflammatory lung disorders. Mitochondria, known as the powerhouse of the cell because of their role in producing energy, are now recognized as crucial regulators of inflammation and immunological responses. Asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome are characterized by complex interactions between immune cells, inflammatory substances, and tissue damage. Dysfunctional mitochondria can increase the generation of reactive oxygen species (ROS), triggering inflammatory pathways. Moreover, mitochondrial failure impacts cellular signaling, which in turn affects the expression of molecules that promote inflammation. In addition, mitochondria have a crucial role in controlling the behavior of immune cells, such as their activation and differentiation, which is essential in the development of inflammatory lung diseases. Their dynamic behavior, encompassing fusion, fission, and mitophagy, also impacts cellular responses to inflammation and oxidative stress. Gaining a comprehensive understanding of the intricate correlation between mitochondria and lung inflammation is essential in order to develop accurate treatment strategies. Targeting ROS generation, dynamics, and mitochondrial function may offer novel approaches to treating inflammatory lung diseases while minimizing tissue damage. Additional investigation into the precise contributions of mitochondria to lung inflammation will provide significant knowledge regarding disease mechanisms and potential therapeutic approaches. This review will focus on how mitochondria in the lung regulate these processes and their involvement in acute and chronic lung diseases.

10.
Front Pharmacol ; 15: 1439835, 2024.
Article in English | MEDLINE | ID: mdl-39228520

ABSTRACT

Background and Aim: Increased oxidative stress within the airways is associated to epithelial damage and amplification of inflammatory responses that in turn contribute to Chronic Obstructive Pulmonary Disease (COPD) progression. This study was aimed to identify whether a new formulation of N-acetylcisteine (NAC), carnitine, curcumin and B2 vitamin could counteract oxidative stress and downstream pro-inflammatory events promoted by cigarette smoke extract (CSE) exposure in primary bronchial epithelial cells (PBEC), both submerged/undifferentiated (S-PBEC) and cultured at the air-liquid interface (ALI-PBEC). Methods: PBEC were exposed to CSE with/without the new formulation or NAC alone and ROS production, IL-8 and IL-6 gene expression and protein release were evaluated. Results: CSE increased ROS, IL-8 and IL-6 gene expression and protein release and the new formulation counteracted these effects. NAC alone was not effective on IL-8 and IL-6 release. The effects of a similar nutraceutical formulation were evaluated in COPD patients treated for six months. The results showed that the treatment reduced the concentration of IL-8 in nasal wash and improved quality of life. Conclusion: The tested formulation, exerting antioxidant and anti-inflammatory effects, can preserve airway epithelial homeostasis and improve clinical symptoms in COPD.

11.
Front Surg ; 11: 1379410, 2024.
Article in English | MEDLINE | ID: mdl-39229253

ABSTRACT

Introduction: Surgical site infections (SSIs) after colorectal surgery remain a significant concern, which warrants effective predictive markers for prompt diagnosis and treatment. Butyrylcholinesterase (BChE), a non-specific cholinesterase enzyme, has been correlated with the risk of hepatic dysfunction progression and, more recently, infectious diseases and septic shock with ongoing research into the utility of BChE in multiple systemic inflammatory conditions. Whether these preliminary results can be translated into predicting infection after colorectal surgery remains in remains in question. This prospective study aimed to assess BChE's potential as a predictive marker for surgical site infections and anastomotic leaks after colorectal surgery. Materials and methods: This single-center prospective study (11/2019-05/2023) enrolled 402 patients who underwent colorectal surgery. BChE levels were measured at four postoperative time points. The primary endpoints focused on BChE's association with complications, particularly surgical site infections (SSIs). Further known predictors of SSI were utilized to construct multivariable models to assess for independent association with SSI development. Results: During the third and fifth day postsurgery, SSI patients had significantly lower mean BChE levels (3.90 KU/L vs. 4.54 KU/L p-value < 0.05, and 4.14 KU/L vs. 4.73 KU/L, p-value < 0.05; t-test, respectively). However, multivariate analysis revealed that when adjusted for other factors, low BChE levels on the first postoperative day were associated with 2.6 times higher odds of developing SSI (OR: 2.6, 95%CI: 1.3-3.9, p-value < 0.05). Similar results were found for low BChE levels on the third postoperative day as they were associated with a. 2.53 times higher odds for developing SSI (OR: 2.5, 95%CI: 1.27-3.87, p-value < 0.05) when adjusted for other factors. Conclusion: In conclusion, in this prospective observational study, low levels in the first and third postsurgery were associated with an increased risk for the development of SSIs but not sepsis.

12.
Front Immunol ; 15: 1430419, 2024.
Article in English | MEDLINE | ID: mdl-39229265

ABSTRACT

Tick-borne infections are increasing in the United States and around the world. The most common tick-borne disease in the United States is Lyme disease caused by infection with the spirochete Borrelia burgdorferi (Bb), and pathogenesis varies from subclinical to severe. Bb infection is transmitted by Ixodes ticks, which can carry multiple other microbial pathogens, including Ehrlichia species. To address how the simultaneous inoculation of a distinct pathogen impacted the course of Bb-induced disease, we used C57BL/6 (B6) mice which are susceptible to Bb infection but develop only mild joint pathology. While infection of B6 mice with Bb alone resulted in minimal inflammatory responses, mice co-infected with both Bb and the obligate intracellular pathogen Ehrlichia muris (Em) displayed hematologic changes, inflammatory cytokine production, and emergency myelopoiesis similar to what was observed in mice infected only with Em. Moreover, infection of B6 mice with Bb alone resulted in no detectable joint inflammation, whereas mice co-infected with both Em and Bb exhibited significant inflammation of the ankle joint. Our findings support the concept that co-infection with Ehrlichia can exacerbate inflammation, resulting in more severe Bb-induced disease.


Subject(s)
Borrelia burgdorferi , Coinfection , Ehrlichia , Ehrlichiosis , Lyme Disease , Mice, Inbred C57BL , Animals , Borrelia burgdorferi/immunology , Lyme Disease/immunology , Lyme Disease/pathology , Lyme Disease/microbiology , Mice , Ehrlichia/immunology , Ehrlichiosis/immunology , Ehrlichiosis/pathology , Coinfection/microbiology , Disease Models, Animal , Cytokines/metabolism , Female
14.
Front Immunol ; 15: 1441637, 2024.
Article in English | MEDLINE | ID: mdl-39229275

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD), usually caused by long-term tobacco smoking, is independently associated with systemic inflammation. However, little is known about the systemic inflammatory status of patients with early-stage COPD (classified as GOLD 1) and long-term smokers with normal lung function (LF). Here, we characterised the early changes in the associated inflammatory state in patients with GOLD 1 and in long-term smokers with normal LF. Methods: Fresh blood samples from 27 patients with GOLD 1, 27 long-term smokers and 14 non-smokers were analysed. Results: Ex vivo blood analysis revealed greater leucocyte-platelet adhesion to TNFα-stimulated pulmonary endothelium in patients with GOLD 1 than in smokers and non-smokers. In addition, platelet reactivity (platelet count and activation, and fibrinogen levels) and the frequency of leucocyte-platelet aggregates were higher in the GOLD 1 group than in the other groups. Some of these findings correlated with the severity of lung dysfunction, while platelet hyperactivity correlated positively with leucocyte-platelet adhesion. The GOLD 1 group also had a higher Th17/Treg ratio and higher circulating levels of IL-17C and C-reactive protein than the other groups. However, long-term smokers also had higher leucocyte counts and activation, and higher plasma levels of TNFα and IL-6 than non-smokers. Conclusion: Our data suggest that the altered inflammatory parameters in long-term smokers may represent early biomarkers of COPD. Accordingly, peripheral immune monitoring based on the above parameters may be useful to prevent disease progression in long-term smokers with normal LF and early COPD.


Subject(s)
Blood Platelets , Leukocytes , Platelet Activation , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/immunology , Male , Female , Middle Aged , Leukocytes/immunology , Leukocytes/metabolism , Blood Platelets/metabolism , Blood Platelets/immunology , Aged , Cell Adhesion , Smoking/adverse effects , Biomarkers/blood
15.
Microbiol Spectr ; : e0132524, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248473

ABSTRACT

Loss of the flagellum marks the pathoadaptation of Pseudomonas aeruginosa to the cystic fibrosis (CF) airway environment during lung disease. Losing the flagellum is advantageous to the bacterium as the flagellum can be recognized by immune cells. The primary purpose of the flagellum is, however, to provide motility to the bacterium. Our goal was to determine whether the loss of flagellar motility or the loss of flagellum expression contributes to P. aeruginosa lung infection in CF. To address this, wild-type and gut-corrected FABP-human cystic fibrosis transmembrane conductance regulator (hCFTR) mice deficient in the murine Cftr gene were infected intratracheally with lethal doses of wild-type or flagellum-deficient P. aeruginosa. While there was no significant difference in the survival of wild-type mice after infection with either of the bacterial strains, a significantly higher mortality was observed in FABP-hCFTR mice infected with flagellum-deficient P. aeruginosa, compared to mice infected with their flagellated counterparts. When FABP-hCFTR mice were infected with isogenic, motility-deficient flagellated mutants, animal survival and lung bacterial titers were similar to those observed in mice infected with the wild-type bacterium. Airway levels of neutrophils and the amount neutrophil elastase were similar in mice infected with either the wild-type bacteria or the flagellum-deficient P. aeruginosa. Our results show that FABP-hCFTR mice have a different response to flagellum loss in P. aeruginosa compared to wild-type animals. The loss of flagellum expression, rather than the loss of motility, is the main driver behind the increased virulence of flagellum-deficient P. aeruginosa in CF. These observations provide new insight into P. aeruginosa virulence in CF.IMPORTANCEPseudomonas aeruginosa, a major respiratory pathogen in cystic fibrosis, is known to lose its flagellum during the course of infection in the airways. Here, we show that the loss of flagellum leads to a more enhanced virulence in Cftr-deficient cystic fibrosis mice than in control animals. Loss of flagellum expression, rather than the loss of flagellar swimming motility, represents the main driver behind this increased virulence suggesting that this appendage plays a specific role in P. aeruginosa virulence in cystic fibrosis airways.

16.
Infect Immun ; : e0032524, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248486

ABSTRACT

Eosinophils are a highly abundant cell type in the gastrointestinal tract during homeostatic conditions, where they have recently been reported to take on an activated phenotype following colonization by the bacterial microbiota. To date, there have been few studies investigating whether eosinophils respond to infection with enteric bacterial pathogens and/or investigating the requirements for eosinophils for effective bacterial pathogen control. In this study, we investigated the response of eosinophils to an acute enteric infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium. We also assessed whether eosinophil deficiency impacted Salmonella burdens in the intestinal tract or impacted the systemic dissemination of Salmonella following an oral infection of littermate wild-type BALB/cJ and eosinophil-deficient ΔdblGATA BALB/cJ mice. We found comparable Salmonella burdens in the intestinal tract of wild-type and eosinophil-deficient mice and no significant differences in the levels of Salmonella disseminating to systemic organs within 3 days of infection. Despite our evidence suggesting that eosinophils are not an essential cell type for controlling bacterial burdens in this acute infection setting, we found higher levels of eosinophils in gut-draining lymph nodes following infection, indicating that eosinophils do respond to Salmonella infection. Our data contribute to the growing evidence that eosinophils are responsive to bacterial stimuli, yet the influence of and requirements for eosinophils during bacterial infection appear to be highly context-dependent.

17.
J Infect Dis ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248500

ABSTRACT

BACKGROUND: Few investigations have assessed contributions of both vaginal bacteria and proinflammatory immune mediators to human immunodeficiency virus (HIV) acquisition risk in a prospective cohort. METHODS: We conducted a nested case-control study of African women who participated in a randomized placebo-controlled trial of daily oral versus vaginal tenofovir-based preexposure prophylaxis for HIV infection. Vaginal concentrations of 23 bacterial taxa and 16 immune mediators were measured. Relationships between individual bacterial concentrations or immune mediators and HIV risk were analyzed using generalized estimating equations in a multivariable model. Factor analysis assessed relationships between combinations of bacterial taxa, immune mediators, and HIV acquisition risk. RESULTS: We identified 177 HIV pre-seroconversion visits from 150 women who acquired HIV and 531 visits from 436 women who remained HIV uninfected. Fourteen bacterial taxa and 6 proinflammatory cytokines and chemokines were individually associated with greater HIV risk after adjusting for confounders. Women with all 14 taxa versus <14 taxa (adjusted odds ratio [aOR], 4.45 [95% confidence interval {CI}, 2.20-8.98]; P < .001) or all 6 immune mediators versus <6 mediators (aOR, 1.77 [95% CI, 1.24-2.52]; P < .001) had greater risk for HIV acquisition. Factor analysis demonstrated that a bacterial factor comprised of 14 high-risk bacterial taxa (aOR, 1.57 [95% CI, 1.27-1.93]; P < 0.001) and the interferon gamma-induced protein 10 (highest quartile: aOR, 3.19 [95% CI, 1.32-7.72]; P = 0.002) contributed to the highest HIV risk. CONCLUSIONS: Bacterial and host biomarkers for predicting HIV acquisition risk identify women at greatest risk for HIV infection and can focus prevention efforts.

18.
Nutr Neurosci ; : 1-9, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248716

ABSTRACT

OBJECTIVES: We conducted the current systematic review to investigate the association between dietary inflammatory index (DII) and severe headaches or migraine among adults via synthesizing observational evidence. METHOD: We conducted a systematic literature search of observational studies through PubMed, Scopus, and Web of Science databases from inception until July 2024. The PECO framework was implemented to select eligible studies as follows: Population (adults with severe headache or migraine), Exposure (individuals with the highest adherence to a pro-inflammatory diet), Comparison (individuals with the lowest adherence to a pro-inflammatory diet), Outcome (risk of developing severe headache or migraine, headaches frequency, duration, severity, and migraine-related disability). RESULTS: After reviewing six studies involving 31,958 individuals, we found that following an anti-inflammatory diet is associated with a lower frequency and severity of migraine headaches. Additionally, our research revealed that individuals with migraines tend to have lower adherence to an anti-inflammatory diet when compared to people without migraines. Surprisingly, adherence to a pro-inflammatory diet was linked to a reduced risk of chronic daily headaches. CONCLUSION: Present findings imply a negative link between an inflammatory diet and severe headaches or migraine. However, further well-designed longitudinal studies are needed to interpret the causality and shed light on the underlying mechanisms.

19.
Br Poult Sci ; : 1-7, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249117

ABSTRACT

1. Poultry farming faces challenges regarding correct hygiene and nutrition. One of the challenges is gram-negative bacteria that stimulate pro-inflammatory reactions through lipopolysaccharide (LPS) and cause disease and anorexia. Liquorice, a medicinal plant containing glycyrrhizin (Glz; a saponin and emulsifier compound) as its main active ingredient, was injected into broilers to investigate any beneficial effects on feed intake in LPS-injected broilers.2. The study involved three experiments using 72 male broiler chickens in each, to examine the impact of Glz on feed intake, especially when challenged with lipopolysaccharide (LPS) by intra-peritoneal (IP) injection to cause inflammation (n = 24). Experiment 1 was conducted to examine the effects of intraperitoneal injection of Glz (12.5, 25 and 50 mg) on feed intake in chickens. In experiment 2, the effects of intracerebroventricular injections of LPS (6.25, 12.5 and 25 ng) were examined. The third experiment investigated the impact of IP injection of Glz on inflammation induced by LPS.3. Injection of Glz significantly increased feed intake in a dose-dependent manner. Whereas LPS significantly reduced the feed intake in feed-deprived chickens (p < 0.05).4. In conclusion, Glz can neutralise the feed intake reduction caused by inflammation in broilers, highlighting its potential role in modulating feed intake in broilers.

20.
Mol Cell Biochem ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249600

ABSTRACT

Previous large-scale genetic studies have prioritized the causal genes piezo type mechanosensitive ion channel component 1 (PIEZO1) and castor zinc finger 1 (CASZ1) associated with varicose veins (VVs). This study aims to evaluate their roles in both clinical and experimental VVs. In this study, we investigated abundance of PIEZO1 and CASZ1 in both varicose and normal veins from the same patients. Yoda1 (a selective PIEZO1 agonist, 2.6 mg/kg/day) or vehicle was administered intraperitoneally for 3 weeks to evaluate the effect of PIEZO1 activation on experimental VVs. Subsequently, endothelial Piezo1 deletion mice (Piezo1iΔEC mice) were generated to explored the role of endothelial PIEZO1 on VVs. Laser speckle imaging, flow cytometry, cell tracing with Evans blue or rhodamine-6G, and histopathological staining were utilized to evaluate the pathophysiology of VVs. Our results showed that mRNA expression of PIEZO1, but not CASZ1, was abundant and increased in clinical VVs. The Piezo1tP1-td mice revealed endothelium-specific expression of PIEZO1 in mice veins. By establishing iliac vein ligation-induced VVs in mice, Yoda1 exacerbated experimental VVs with increased inflammatory cell infiltration. Subsequently, endothelial Piezo1 deletion (Piezo1iΔEC mice) alleviated experimental VVs and vascular remodeling by directly reducing vascular permeability and leukocyte-endothelium interactions compared to the control (Piezo1fl/fl mice). PIEZO1 is highly expressed in clinical VVs, meanwhile, activation or inhibition of PIEZO1 exerts a remarkable effect on experimental VVs. Furthermore, Piezo1 may constitute a potential therapeutic approach for the medical treatment of VVs.

SELECTION OF CITATIONS
SEARCH DETAIL