Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 692
Filter
1.
Small ; : e2404581, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989685

ABSTRACT

Printing technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential. Herein, a series of multilayer configurations, including Ag/(Ca2NaNb4O13/Ag)n and graphene/(Ca2NaNb4O13/graphene)n (n = 1-3), are successfully inkjet-printed onto diverse rigid and flexible substrates through optimized ink formulations, inkjet printing parameters, thermal treatment conditions, and rational multilayer structural design using high-k perovskite nanosheets, graphene nanosheets and silver. The dielectric performance is optimized by fine-tuning the number of dielectric layers and modifying the electrode/dielectric interface. As a result, the graphene/(Ca2NaNb4O13/graphene)3 multilayer ceramic capacitors exhibit a remarkable capacitance density of 346 ± 12 nF cm-2 and a high dielectric constant of 193 ± 18. Additionally, these devices demonstrate moderate insulation properties, flexibility, thermal stability, and chemical sensitivity. This work shed light on the potential of multilayer structural design in additive manufacturing of high-performance 2D material-based ceramic capacitors.

2.
Article in English | MEDLINE | ID: mdl-39012262

ABSTRACT

The switching of conventional field-effect transistors (FETs) is limited by the Boltzmann barrier of thermionic emission, which prevents the realization of low-power electronics. In order to overcome this limitation, among others, unconventional device geometry with a ferroelectric/dielectric insulator stack has been proposed to demonstrate stable negative-capacitance behavior. Here, the switching of the ferroelectric layer behaves like a step-up amplifier and results in a body factor less than 1. This implies a larger change in the semiconductor surface potential compared to the applied gate voltage variation. The transistors with such ferroelectric/dielectric stack are known as negative-capacitance field-effect transistors (nc-FETs), and can demonstrate a subthreshold slope lower than the Boltzmann's limit (60 mV/decade). While nc-FETs have typically been realized with high-vacuum-deposition processes, here we show fully printed nc-FETs with amorphous indium-gallium-zinc oxide (a-IGZO) as the semiconductor material, Al2O3 as the dielectric, and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as the polymer ferroelectric. The printed nc-FETs demonstrate an extremely low subthreshold slope of ∼2.3 mV/decade at room temperature, which remains below the Boltzmann's limit for over 5 orders of magnitude of drain currents. Furthermore, the unipolar depletion-load-type inverters fabricated using n-type nc-FETs have demonstrated an extraordinary signal gain of 2691.

3.
Int J Biol Macromol ; 274(Pt 1): 133269, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906353

ABSTRACT

In order to fulfill the demands for degradability, a broad working range, and heightened sensitivity in flexible sensors, biodegradable polyurethane (BTPU) was synthesized and combined with CNTs to produce BTPU/CNTs coated cotton fabric using an ultrasonic-assisted inkjet printing process. The synthesized BTPU displayed a capacity for degradation in a phosphate buffered saline solution, resulting in a weight loss of 25 % after 12 weeks of degradation. The BTPU/CNTs coated cotton fabric sensor achieved an extensive strain sensing range of 0-137.5 %, characterized by high linearity and a notable sensitivity (gauge factor (GF) of 126.8). Notably, it demonstrated a low strain detection limit (1 %), rapid response (within 280 ms), and robust durability, enabling precise monitoring of both large and subtle human body movements such as finger, wrist, neck, and knee bending, as well as swallowing. Moreover, the BTPU/CNTs coated cotton fabric exhibited favorable biocompatibility with human epidermis, enabling potential applications as wearable skin-contact sensors. This work provides insight into the development of degradable and high sensing performance sensors suitable for applications in electronic skins and health monitoring devices.

4.
Cryobiology ; 116: 104932, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38925357

ABSTRACT

Non-permeable disaccharides are widely used as cryoprotectant agents due to their low cytotoxicity, but their protective effect is insufficient when the disaccharides are present only extracellularly. On the other hand, cryoprotectant agent (CPA)-free cryopreservation has been recently achieved by instantaneously inkjet-freezing cells as tiny droplets. However, CPA-free cryopreservation requires skilled handling operations due to instability of the vitreous water without the CPA. In this study, the effectiveness of separately adding two types of disaccharides in inkjet freezing of 3T3 cells was evaluated and the following results were obtained. First, trehalose showed the highest effect at 0.57 M, twice the plasma osmolarity, with a maximum cell viability of over 90 % when freezing 70 pL droplets. However, higher concentrations of trehalose decreased cell viability due to damage caused by dehydration. Similarly, sucrose gave cell viability close to 90 % at 0.57 M with 70 pL droplets, and higher concentrations decreased cell viability. Next, the relationship between minimum trehalose concentrations to prevent intracellular and extracellular ice crystal formation and droplet size was analyzed. The results indicated that trehalose of less than 0.57 M was able to inhibit intracellular ice crystal formation even in the largest droplet used in this study, 450 pL, while trehalose of nearly 0.57 M was required to inhibit extracellular ice crystal formation in the smallest droplet, 70 pL. In other words, the suppression of extracellular ice crystals by the addition of CPA was shown to be crucial in improving the viability of inkjet superflash freezing.

5.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932081

ABSTRACT

Silver-based metal-organic decomposition inks composed of silver salts, complexing agents and volatile solvents are now the subject of much research due to the simplicity and variability of their preparation, their high stability and their relatively low sintering temperature. The use of this type of ink in inkjet printing allows for improved cost-effective and environmentally friendly technology for the production of electrical devices, including flexible electronics. An approach to producing a silver salt-based reactive ink for jet printing has been developed. The test images were printed with an inkjet printer onto polyimide substrates, and two-stage thermal sintering was carried out at temperatures of 60 °C and 100-180 °C. The structure and electrical properties of the obtained conductive lines were investigated. As a result, under optimal conditions an electrically conductive film with low surface resistance of approximately 3 Ω/square can be formed.

6.
Biosens Bioelectron ; 260: 116421, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38838572

ABSTRACT

Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate. This network enables real-time monitoring of critical physiological parameters, including temperature, humidity, and muscle contraction. Remarkably, our system operates under battery-free and wireless near-field communication (NFC) technology for data readout via smartphones. Moreover, two of the three sensors were integrated onto a naturally adhesive bioinspired membrane. This membrane, developed using an eco-friendly, high-throughput process, draws inspiration from the remarkable adhesive properties of mussel-inspired molecules. The resulting ultra-conformable membrane adheres effortlessly to the skin, ensuring reliable and continuous data collection. The urgency of effective monitoring systems cannot be overstated, especially in the context of rising heat stroke incidents attributed to climate change and high-risk occupations. Heat stroke manifests as elevated skin temperature, lack of sweating, and seizures. Swift intervention is crucial to prevent progression to coma or fatality. Therefore, our proposed system holds immense promise for the monitoring of these parameters on the field, benefiting both the general population and high-risk workers, such as firefighters.


Subject(s)
Biosensing Techniques , Bivalvia , Heat Stroke , Wearable Electronic Devices , Wireless Technology , Humans , Wireless Technology/instrumentation , Biosensing Techniques/instrumentation , Animals , Heat Stroke/prevention & control , Bivalvia/chemistry , Adhesives/chemistry , Membranes, Artificial , Equipment Design , Smartphone
7.
Int J Pharm X ; 7: 100256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38882398

ABSTRACT

The field of pharmaceutical 3D printing is growing over the past year, with Spitam® as the first 3D printed dosage form on the market. Showing the suitability of a binder jetting process for dosage forms. Although the development of inks for pharmaceutical field is more trail and error based, focusing on the Z-number as key parameter to judge the printability of an ink. To generate a more knowledgeable based ink development an approach from electronics printing was transferred to the field of pharmaceutical binder jetting. Therefore, a dimensionless space was used to investigate the limits of printability for the used Spectra S Class SL-128 piezo print head using solvent based inks. The jettability of inks could now be judged based on the capillary and weber number. Addition of different polymers into the ink narrowed the printable space and showed, that the ink development purely based on Z-numbers is not suitable to predict printability. Two possible ink candidates were developed based on the droplet momentum which showed huge differences in process stability, indicating that the used polymer type and concentration has a high influence on printability and process stability. Based on the study a more knowledgeable based ink design for the field of pharmaceutical binder jetting is proposed, to shift the ink design to a more knowledgeable based and process-oriented approach.

8.
Micromachines (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38930651

ABSTRACT

The inkjet printing of water-based graphene and graphene oxide inks on five substrates, two rigid (silicon and glass) and three flexible (cellulose, indium tin oxide-coated polyethylene terephthalate (ITO-PET) and ceramic coated paper (PEL paper)), is reported in this work. The physical properties of the inks, the chemical/topographical properties of selected substrates, and the inkjet printing (IJP) of the graphene-based materials, including the optimisation of the printing parameters together with the morphological characterisation of the printed layers, are investigated and described in this article. Furthermore, the impact of both the chemical and topographical properties of the substrates and the physical properties of graphene-based inks on the morphology, wettability and surface coverage of the inkjet-printed graphene patterns is studied and discussed in detail.

9.
Micromachines (Basel) ; 15(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38930719

ABSTRACT

This study investigated the influence of microstructure on the performance of Ag inkjet-printed, resistive temperature detectors (RTDs) fabricated using particle-free inks based on a silver nitrate (AgNO3) precursor and ethylene glycol as the ink solvent. Specifically, the temperature coefficient of resistance (TCR) and sensitivity for sensors printed using inks that use monoethylene glycol (mono-EG), diethylene glycol (di-EG), and triethylene glycol (tri-EG) and subjected to a low-pressure argon (Ar) plasma after printing were investigated. Scanning electron microscopy (SEM) confirmed previous findings that microstructure is strongly influenced by the ink solvent, with mono-EG inks producing dense structures, while di- and tri-EG inks produce porous structures, with tri-EG inks yielding the most porous structures. RTD testing revealed that sensors printed using mono-EG ink exhibited the highest TCR (1.7 × 10-3/°C), followed by di-EG ink (8.2 × 10-4/°C) and tri-EG ink (7.2 × 10-4/°C). These findings indicate that porosity exhibits a strong negative influence on TCR. Sensitivity was not strongly influenced by microstructure but rather by the resistance of RTD. The highest sensitivity (0.84 Ω/°C) was observed for an RTD printed using mono-EG ink but not under plasma exposure conditions that yield the highest TCR.

10.
Micromachines (Basel) ; 15(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930744

ABSTRACT

As a novel technology for fabricating large-screen OLED devices, OLED inkjet printing places extreme demands on the positioning accuracy of inkjet printing platforms. However, thermal deformation of the connection mechanism often reduces the printing precision of OLED printing equipment, significantly impacting overall print quality. This study introduces a compliant connection mechanism that achieves precise positioning of the inkjet printing platform and can self-eliminate thermal distortion. The design of the mechanism's core component is based on the Freedom and Constraint Topology (FACT) principle. This component is constructed from three distinct compliant sections arranged in series, collectively providing three degrees of freedom. Furthermore, the resistance to deformation caused by gravity and other external forces was evaluated by analyzing both vertical and horizontal stiffness. To validate the mechanism's thermal distortion elimination and gravity resistance capabilities, finite element analysis (FEA) was carried out. The results demonstrate that the mechanism effectively reduces the maximum deformation of the platform by approximately 46% and the average deformation across the entire platform by approximately 59%. These findings confirm that the mechanism has potential in high-precision positioning tasks that need to mitigate thermal distortion.

11.
ACS Appl Mater Interfaces ; 16(19): 24908-24919, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38706177

ABSTRACT

Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.

12.
Sci Technol Adv Mater ; 25(1): 2342772, 2024.
Article in English | MEDLINE | ID: mdl-38766515

ABSTRACT

As miniaturization of semiconductor memory devices is reaching its physical and technological limits, there is a demand for memory technologies that operate on new principles. Atomic switches are nanoionic devices that show repeatable resistive switching between high-resistance and low-resistance states under bias voltage applications, based on the transport of metal ions and redox reactions in solids. Their essential structure consists of an ion conductor sandwiched between electrochemically active and inert electrodes. This review focuses on the resistive switching mechanism of atomic switches that utilize a solid polymer electrolyte (SPE) as the ion conductor. Owing to the superior properties of polymer materials such as mechanical flexibility, compatibility with various substrates, and low fabrication costs, SPE-based atomic switches are a promising candidate for the next-generation of volatile and nonvolatile memories. Herein, we describe their operating mechanisms and key factors for controlling the device performance with different polymer matrices. In particular, the effects of moisture absorption in the polymer matrix on the resistive switching behavior are addressed in detail. As potential applications, atomic switches with inkjet-printed SPE and quantum conductance behavior are described. SPE-based atomic switches also have great potential in use for neuromorphic devices. The development of these devices will be enhanced using nanoarchitectonics concepts, which integrate functional materials and devices.


This article reviews a series of works starting with the author's 2011 paper on solid polymer electrolyte-based atomic switches, and describes the current status and future prospects for this technology.

13.
Heliyon ; 10(10): e30163, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813142

ABSTRACT

Inkjet printing is a prevalent printing technology that finds extensive applications in diverse fields, including mechanical manufacturing and flexible electronics. Enhancing the quality of inkjet printing has consistently piqued significant interest, with the goal of attaining superior printing resolution, precise color reproduction, and finer image details. This article begins with an overview of the current advancements in inkjet printing, elaborating on four key principles and technologies of inkjet printing. Subsequently, the article delves into the application and research progress related to enhancing inkjet printing quality across various fields. This exploration is structured around four perspectives: printing equipment, substrates, ink properties, and emerging printing technologies. Significant enhancements in inkjet printing quality, resulting in improved image details and color reproduction effects, can be attained by optimizing ink formulations, refining inkjet head design, and selecting suitable substrates and surface treatment methods. To conclude, this article addresses and summarizes future technological advancements aimed at enhancing inkjet printing quality.

14.
Adv Mater ; : e2403852, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696202

ABSTRACT

An abrupt cessation of antidepressant medication can be challenging due to the appearance of withdrawal symptoms. A slow hyperbolic tapering of an antidepressant, such as citalopram hydrobromide (CHB), can mitigate the withdrawal syndrome. However, there are no viable dosage forms on the market to implement the tapering scheme. A solution using a tunable modular design (TMD) approach to produce flexible and accurate doses of CHB is proposed. This design consists of two parts: 1) a module with a fixed amount of preloaded CHB in a freeze-dried polymer matrix, and 2) fine-tuning the CHB dose by inkjet printing. A noncontact food-grade printer, used for the first time for printing pharmaceuticals, is modified to allow for accurate printing of the highly concentrated CHB ink on the porous CHB-free or CHB-preloaded modules. The produced modules with submilligram precision are bench-marked with commercially available CHB tablets that are manually divided. The TMD covers the entire range of doses needed for the tapering (0.5-23.8 mg). The greatest variance is 13% and 88% when comparing the TMD and self-tapering, respectively. Self-tapering is proven inaccurate and showcases the need for the TMD to make available accurate and personalized doses to wean off treatment with CHB.

15.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732823

ABSTRACT

Flexible electronics, also referred to as printable electronics, represent an interesting technology for implementing electronic circuits via depositing electronic devices onto flexible substrates, boosting their possible applications. Among all flexible electronics, interdigitated electrodes (IDEs) are currently being used for different sensor applications since they offer significant benefits beyond their functionality as capacitors, like the generation of high output voltage, fewer fabrication steps, convenience of application of sensitive coatings, material imaging capability and a potential of spectroscopy measurements via electrical excitation frequency variation. This review examines the role of IDEs in printed and flexible electronics since they are progressively being incorporated into a myriad of applications, envisaging that the growth pattern will continue in the next generations of flexible circuits to come.

16.
Sensors (Basel) ; 24(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38733045

ABSTRACT

The development of e-textiles necessitates the creation of highly conductive inks that are compatible with precise inkjet printing, which remains a key challenge. This work presents an innovative, syringe-based method to optimize a novel bio-sourced silver ink for inkjet printing on textiles. We investigate the relationships between inks' composition, rheological properties, and printing behavior, ultimately assessing the electrical performance of the fabricated circuits. Using Na-alginate and polyethylene glycol (PEG) as the suspension matrix, we demonstrate their viscosity depends on the component ratios. Rheological control of the silver nanoparticle-laden ink has become paramount for uniform printing on textiles. A specific formulation (3 wt.% AgNPs, 20 wt.% Na-alginate, 40 wt.% PEG, and 40 wt.% solvent) exhibits the optimal rheology, enabling the printing of 0.1 mm thick conductive lines with a low resistivity (8 × 10-3 Ω/cm). Our findings pave the way for designing eco-friendly ink formulations that are suitable for inkjet printing flexible antennas and other electronic circuits onto textiles, opening up exciting possibilities for the next generation of E-textiles.

17.
Micromachines (Basel) ; 15(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38793179

ABSTRACT

With the rapid development of the emerging intelligent, flexible, transparent, and wearable electronic devices, such as quantum-dot-based micro light-emitting diodes (micro-LEDs), thin-film transistors (TFTs), and flexible sensors, numerous pixel-level printing technologies have emerged. Among them, inkjet printing has proven to be a useful and effective tool for consistently printing micron-level ink droplets, for instance, smaller than 50 µm, onto wearable electronic devices. However, quickly and accurately determining the printing quality, which is significant for the electronic device performance, is challenging due to the large quantity and micron size of ink droplets. Therefore, leveraging existing image processing algorithms, we have developed an effective method and software for quickly detecting the morphology of printed inks served in inkjet printing. This method is based on the edge detection technology. We believe this method can greatly meet the increasing demands for quick evaluation of print quality in inkjet printing.

18.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786790

ABSTRACT

The value of two-dimensional (2D) materials in printed electronics has been gradually explored, and the rheological properties of 2D material dispersions are very different for various printing technologies. Understanding the rheological properties of 2D material dispersions plays a vital role in selecting the optimal manufacturing technology. Inkjet printing is suitable for small nanosheet sizes and low solution viscosity, and it has a significant advantage in developing nanosheet inks because of its masklessness, high efficiency, and high precision. In this work, we selected 2D Ti0.8Co0.2O2 nanosheets, which can be synthesized in large quantities by the liquid phase exfoliation technique; investigated the effects of nanosheet particle size, solution concentration on the rheological properties of the dispersion; and obtained the optimal printing processing method of the dispersion as inkjet printing. The ultrathin Ti0.8Co0.2O2 nanosheet films were prepared by inkjet printing, and their magnetic characteristics were compared with those of Ti0.8Co0.2O2 powder. The films prepared by inkjet printing exhibited long-range ordering, maintaining the nanosheet powders' paramagnetic characteristics. Our work underscored the potential of inkjet printing as a promising method for fabricating precisely controlled thin films using 2D materials, with applications spanning electronics, sensors, and catalysis.

19.
Talanta ; 275: 126107, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38696901

ABSTRACT

In this letter, we propose a miniaturization scheme of inkjet printed ionic sensing electrodes by adding graphene into the ion-selective PVC film not only to reduce the impedance of the ionic liquid layer of the electrode but also to increase the electrode capacitance for the reduction of the response time. Based on the scheme, we present a fully inkjet-printed electrochemical ion-selective sensor comprising a working electrode and reference electrode, which are inkjet-printed Ag NPs/PEDOT:PSS-graphene/PVC-graphene and Ag/AgCl(s)/ionic liquid PVC-graphene layer structures, respectively. The printed ion-selective working electrode has been miniaturized to a size of 22,400 µm2 equivalent to a square shape of ∼150 × 150 µm2 comparable to the size of a human cell. By adding graphene to the ion selective PVC film, more than 90 % charge transfer resistance reduction can be achieved and the shunt capacitance is increased by 3.4-fold in shunt capacitance compared to the film without graphene, thereby more than 33 % reduction of the response time required to reach equilibrium. Meanwhile, these miniaturized potassium sensors using the working electrodes with/without adding graphene have been integrated with in-lab signal-processing and wireless-transmission module to yield similar results to the one measured by commercial electrochemical workstation showing a great potential for real-time monitoring in portable clinical trials. Specifically, the proposed sensor utilizing graphene-enhanced electrodes demonstrates a linearity uncertainty of 2.9 mV, which is approximately half of the uncertainty observed in the sensors lacking graphene integration.

20.
Sci Rep ; 14(1): 10351, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710929

ABSTRACT

Additive manufacturing of conductive layers on a dielectric substrate has garnered significant interest due to its promise to produce printed electronics efficiently and its capability to print on curved substrates. A considerable challenge encountered is the conductive layer's potential peeling due to inadequate adhesion with the dielectric substrate, which compromises the durability and functionality of the electronics. This study strives to facilitate the binding force through dielectric substrate surface modification using concentrated sulfuric acid and ultraviolet (UV) laser treatment. First, polyetheretherketone (PEEK) and nanoparticle silver ink were employed as the studied material. Second, the surface treatment of PEEK substrates was conducted across six levels of sulfuric acid exposure time and eight levels of UV laser scanning velocity. Then, responses such as surface morphology, roughness, elemental composition, chemical bonding characteristics, water contact angle, and surface free energy (SFE) were assessed to understand the effects of these treatments. Finally, the nanoparticle silver ink layer was deposited on the PEEK surface, and the adhesion force measured using a pull-off adhesion tester. Results unveiled a binding force of 0.37 MPa on unmodified surface, which escalated to 1.99 MPa with sulfuric acid treatment and 2.21 MPa with UV laser treatment. Additionally, cross-approach treatment investigations revealed that application sequence significantly impacts results, increasing binding force to 2.77 MPa. The analysis further delves into the influence mechanism of the surface modification on the binding force, elucidating that UV laser and sulfuric acid surface treatment methods hold substantial promise for enhancing the binding force between heterogeneous materials in the additive manufacturing of electronics.

SELECTION OF CITATIONS
SEARCH DETAIL