Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 682
Filter
1.
Article in English | MEDLINE | ID: mdl-38905002

ABSTRACT

Cell cultures are models in biological and medical research to understand physiological and pathological processes. Cell lines are not always available depending on cell type and required species. In addition, the immortalization process often affects cell biology. Primary cells generally maintain a greater degree of similarity in short-term culture to the cells in tissue. Goal of this study was to verify the suitability of chicken primary epithelial caecal cells (PECCs) for in vitro investigations of host‒pathogen interactions. Epithelial nature of PECCs was confirmed by detection of tight and adherens junctions and cobblestone-like cell morphology. Sialic acids distribution was similar to that in caecal cyrosections. To understand the capacity of PECCs to respond to microbial challenges, the Toll-like receptors (TLRs) repertoire was determined. Exposure of PECCs to polyinosinic-polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) led to upregulation of type I and III interferon (IFN) as well as interleukin (IL-) 1ß, IL-6 and IL-8 mRNA expression. Overall, the PECCs showed properties of polarized epithelial cells. The presence of TLRs, their differential expression, as well as pattern recognition receptor dependent immune responses enable PECCs to act as suitable in vitro model for host‒pathogen interaction studies, which are difficult to conduct under in vivo conditions.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167279, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844113

ABSTRACT

Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) characterized by intestinal epithelium damage. Recently, Lipocalin-2 (LCN2) has been identified as a potential fecal biomarker for patients with UC. However, further investigation is required to explore its pro-inflammatory role in UC and the underlying mechanism. The biological analysis revealed that Lcn2 serves as a putative signature gene in the colon mucosa of patients with UC and its association with the capsase/pyroptosis signaling pathway in UC. In wild-type mice with DSS-induced colitis, LCN2 overexpression in colon mucosa via in vivo administration of Lcn2 overexpression plasmid resulted in exacerbation of colitis symptoms and epithelium damage, as well as increased expression levels of pyroptosis markers (cleaved caspase1, GSDMD, IL-1ß, HMGB1 and IL-18). Additionally, we observed downregulation in the expression levels of pyroptosis markers following in vivo silencing of LCN2. However, the pro-inflammatory effect of LCN2 overexpression was effectively restrained in GSDMD-KO mice. Moreover, single-cell RNA-sequencing analysis revealed that Lcn2 was predominantly expressed in the intestinal epithelial cells (IECs) within the colon mucosa of patients with UC. We found that LCN2 effectively regulated pyroptosis events by modulating the NF-κB/NLRP3/GSDMD signaling axis in NCM460 cells stimulated by LPS and ATP. These findings demonstrate the pro-inflammatory role of LCN2 in colon epithelium and provide a potential target for inhibiting pyroptosis in UC.

3.
Fish Shellfish Immunol ; 150: 109605, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704111

ABSTRACT

Crucian carp (Carassius carassius) is an important aquatic economic animal, and the immune barrier function of its intestine has been a focus of research into oral vaccines and drugs. However, the histological structures of the intestinal barrier and its adjacent areas have not been clearly established, and little subcellular evidence is available to elucidate the spatial distribution of intracellular biological processes. In this study, the spatial distribution of autophagy and endosome formation in the intestinal epithelial cells (IECs) of crucian carp were analyzed. These two biological activities are closely related to intestinal homeostasis, immunity, and cell communication. Periodic acid-Schiff (PAS) and Masson's trichrome staining were employed to elucidate the distinctive histological framework of the Crucian carp's myoid cell network, which resides within the subepithelial layer and is characterized by gap junctions. Transmission electron microscopy (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) were used to detect the structural and functional aspects of the IEC in different intestinal segments. TEM and immunohistochemical analyses captured the biogenesis and maturation of early and late endosomes as well as multivesicular bodies (MVBs), as well as the initiation and progression of autophagy, including macroautophagy and mitophagy. The endosome and MVBs-specific marker CD63 and autophagy-related protein LC3 were highly expressed in IECs and were correlated with autophagy and endosome biosynthesis in the apical and basal regions of individual cells, and differed between different intestinal segments. In summary, this study elucidated the ubiquity and morphological characteristics of autophagy and endosome formation across different intestinal segments of crucian carp. A unique myoid cell network beneath the intestinal epithelium in crucian carp was also identified, expanding the histological understanding of this animal's intestinal tract.


Subject(s)
Autophagy , Carps , Endosomes , Animals , Carps/immunology , Endosomes/immunology , Endosomes/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/cytology , Intestines/immunology , Intestines/cytology , Epithelial Cells/immunology
4.
Article in English | MEDLINE | ID: mdl-38788899

ABSTRACT

BACKGROUND & AIMS: There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS: Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induces a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS: We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.

5.
Cell Mol Immunol ; 21(6): 620-633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720063

ABSTRACT

Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in infection and inflammatory diseases by facilitating the formation of neutrophil extracellular traps (NETs). However, the substrates of PAD4 and its exact role in inflammatory bowel disease (IBD) remain unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) and substrate citrullination mapping to decipher the role of PAD4 in intestinal inflammation associated with IBD. Our results demonstrated that PAD4 deficiency alleviated colonic inflammation and restored intestinal barrier function in a dextran sulfate sodium (DSS)-induced colitis mouse model. scRNA-seq analysis revealed significant alterations in intestinal cell populations, with reduced neutrophil numbers and changes in epithelial subsets upon PAD4 deletion. Gene expression analysis highlighted pathways related to inflammation and epithelial cell function. Furthermore, we found that neutrophil-derived extracellular vesicles (EVs) carrying PAD4 were secreted into intestinal epithelial cells (IECs). Within IECs, PAD4 citrullinates mitochondrial creatine kinase 1 (CKMT1) at the R242 site, leading to reduced CKMT1 protein stability via the autophagy pathway. This action compromises mitochondrial homeostasis, impairs intestinal barrier integrity, and induces IECs apoptosis. IEC-specific depletion of CKMT1 exacerbated intestinal inflammation and apoptosis in mice with colitis. Clinical analysis of IBD patients revealed elevated levels of PAD4, increased CKMT1 citrullination, and decreased CKMT1 expression. In summary, our findings highlight the crucial role of PAD4 in IBD, where it modulates IECs plasticity via CKMT1 citrullination, suggesting that PAD4 may be a potential therapeutic target for IBD.


Subject(s)
Citrullination , Inflammation , Inflammatory Bowel Diseases , Intestinal Mucosa , Mice, Inbred C57BL , Neutrophils , Protein-Arginine Deiminase Type 4 , Animals , Humans , Male , Mice , Colitis/pathology , Colitis/chemically induced , Dextran Sulfate , Disease Models, Animal , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Mice, Knockout , Neutrophils/metabolism , Neutrophils/immunology , Protein-Arginine Deiminase Type 4/metabolism , Creatine Kinase/metabolism
6.
Vet Sci ; 11(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38787178

ABSTRACT

Diarrhea is the most common issue in sheep farms, typically due to pathogenic Escherichia coli (E. coli) infections, such as E. coli F17. microRNA, a primary type of non-coding RNA, has been shown to be involved in diarrhea caused by pathogenic E. coli. To elucidate the profound mechanisms of miRNA in E. coli F17 infections, methods such as E. coli F17 adhesion assay, colony counting assay, relative quantification of bacterial E. coli fimbriae gene expression, indirect immune fluorescence (IF), Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), Western blotting (WB), and scratch assay were conducted to investigate the effect of miR-329b-5p overexpression/knock-down on E. coli F17 susceptibility of sheep intestinal epithelial cells (IECs). The findings indicated that miR-329b-5p enhances the E. coli F17 resistance of sheep IECs to E.coli F17 by promoting adhesion between E. coli F17 and IEC, as well as IEC proliferation and migration. In summary, miR-329b-5p plays a crucial role in the defense of sheep IECs against E. coli F17 infection, providing valuable insights into its mechanism of action.

7.
Phytother Res ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706097

ABSTRACT

Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.

8.
Cell Rep Med ; 5(5): 101510, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38614093

ABSTRACT

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.


Subject(s)
Arachidonic Acid , Cell Transformation, Neoplastic , Chromatin Assembly and Disassembly , Class I Phosphatidylinositol 3-Kinases , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Humans , Arachidonic Acid/metabolism , Animals , Mutation/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromatin Assembly and Disassembly/genetics , Mice , Cell Line, Tumor , Colon/pathology , Colon/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Exosomes/metabolism , Exosomes/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Histones/metabolism , Histones/genetics
9.
J Microbiol ; 62(3): 167-179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38630349

ABSTRACT

The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Animals , Antimicrobial Peptides/metabolism , Immunity, Innate , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Bacteria/metabolism , Intestines/microbiology , Intestines/immunology
10.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636715

ABSTRACT

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Subject(s)
Epithelial Cells , Intestinal Mucosa , Macrophages , Selenium , Trichothecenes , Animals , Trichothecenes/toxicity , Mice , Macrophages/metabolism , Macrophages/drug effects , Selenium/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Macrophage Activation/drug effects , Mice, Inbred C57BL , Signal Transduction/drug effects , Ferroptosis/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism
11.
J Pharm Anal ; 14(4): 100901, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665223

ABSTRACT

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical ß-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with ß-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.

12.
Vet Sci ; 11(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38668421

ABSTRACT

In the weaning period, piglets often face oxidative stress, which will cause increased diarrhea and mortality. Genistein, a flavonoid, which is extracted from leguminous plants, possesses anti-inflammatory and antioxidative bioactivities. However, little is known about whether genistein could attenuate the oxidative stress that occurs in porcine intestinal epithelial cells (IPEC-J2). Herein, this experiment was carried out to investigate the protective effects of genistein in the IPEC-J2 cells oxidative stress model. Our results disclosed that H2O2 stimulation brought about a significant diminution in catalase (CAT) activity and cell viability, as well as an increase in the levels of reactive oxygen species (ROS) in IPEC-J2 cells (p < 0.05), whereas pretreating cells with genistein before H2O2 exposure helped to alleviate the reduction in CAT activity and cell viability (p < 0.05) and the raise in the levels of ROS (p = 0.061) caused by H2O2. Furthermore, H2O2 stimulation of IPEC-J2 cells remarkably suppressed gene level Nrf2 and CAT expression, in addition to protein level Nrf2 expression, but pretreating cells with genistein reversed this change (p < 0.05). Moreover, genistein pretreatment prevented the downregulation of occludin expression at the gene and protein level, and ZO-1 expression at gene level (p < 0.05). In summary, our findings indicate that genistein possesses an antioxidant capacity in IPEC-J2 cells which is effective against oxidative stress; the potential mechanism may involve the Nrf2 signaling pathway. Our findings could offer a novel nutritional intervention strategy to enhance the intestinal health of piglets during the weaning process.

13.
Microorganisms ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674783

ABSTRACT

The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1-UK; CP10-Sweden; 25037-CP01 and CP22-USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05-0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23-62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77-85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host-pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity.

14.
J Sci Food Agric ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597265

ABSTRACT

BACKGROUND: The intestine is a barrier resisting various stress responses. Intrauterine growth restriction (IUGR) can cause damage to the intestinal barrier via destroying the balance of intestinal epithelial cells' proliferation and apoptosis. Bacillus subtilis has been reported to regulate intestinal epithelial cells' proliferation and apoptosis. Thus, the purpose of this study was to determine if B. subtilis could regulate intestinal epithelial cells' proliferation and apoptosis in intrauterine growth restriction suckling piglets. RESULTS: Compared with the normal birth weight group, the IUGR group showed greater mean optical density values of Ki-67-positive cells in the ileal crypt (P < 0.05). IUGR resulted in higher ability of proliferation and apoptosis of intestinal epithelial cells, by upregulation of the messenger RNA (mRNA) or proteins expression of leucine rich repeat containing G protein coupled receptor 5, Caspase-3, Caspase-7, ß-catenin, cyclinD1, B-cell lymphoma-2 associated agonist of cell death, and BCL2 associated X (P < 0.05), and downregulation of the mRNA or protein expression of B-cell lymphoma-2 and B-cell lymphoma-2-like 1 (P < 0.05). However, B. subtilis supplementation decreased the mRNA or proteins expression of leucine rich repeat containing G protein coupled receptor 5, SPARC related modular calcium binding 2, tumor necrosis factor receptor superfamily member 19, cyclinD1, Caspase-7, ß-catenin, B-cell lymphoma-2 associated agonist of cell death, and Caspase-3 (P < 0.05), and increased the mRNA expression of B-cell lymphoma-2 (P < 0.05). CONCLUSION: IUGR led to excessive apoptosis of intestinal epithelial cells, which induced compensatory proliferation. However, B. subtilis treatment prevented intestinal epithelial cells of IUGR suckling piglets from excessive apoptosis. © 2024 Society of Chemical Industry.

15.
Adv Sci (Weinh) ; : e2401654, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650111

ABSTRACT

T-bet, encoded by TBX21, is extensively expressed across various immune cell types, and orchestrates critical functions in their development, survival, and physiological activities. However, the role of T-bet in non-immune compartments, notably the epithelial cells, remains obscure. Herein, a Tet-O-T-bet transgenic mouse strain is generated for doxycycline-inducible T-bet expression in adult animals. Unexpectedly, ubiquitous T-bet overexpression causes acute diarrhea, intestinal damage, and rapid mortality. Cell-type-specific analyses reveal that T-bet-driven pathology is not attributable to its overexpression in CD4+ T cells or myeloid lineages. Instead, inducible T-bet overexpression in the intestinal epithelial cells is the critical determinant of the observed lethal phenotype. Mechanistically, T-bet overexpression modulates ion channel and transporter profiles in gut epithelial cells, triggering profound fluid secretion and subsequent lethal dehydration. Furthermore, ectopic T-bet expression enhances gut epithelial cell apoptosis and markedly suppresses colon cancer development in xenograft models. Collectively, the findings unveil a previously unrecognized role of T-bet in intestinal epithelial cells for inducing apoptosis, diarrhea, and local inflammation, thus implicating its potential as a therapeutic target for the treatment of cancer and inflammatory diseases.

16.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38619320

ABSTRACT

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Subject(s)
Epithelial Cells , Glucose , Intestine, Small , Sodium-Glucose Transporter 1 , Trichothecenes , Animals , Trichothecenes/toxicity , Swine , Glucose/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Cell Line , Intestine, Small/drug effects , Inflammation/chemically induced , Cytokines/metabolism , Cytokines/genetics , Biological Transport/drug effects , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Apoptosis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
17.
Cell Rep ; 43(4): 114067, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583150

ABSTRACT

Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Mice , Oxidative Stress/drug effects , Peptidoglycan/metabolism , Mice, Inbred C57BL , Adenosine Triphosphate/metabolism
18.
Mol Med Rep ; 29(6)2024 06.
Article in English | MEDLINE | ID: mdl-38577927

ABSTRACT

The intestinal mucosal barrier is of great importance for maintaining the stability of the internal environment, which is closely related to the occurrence and development of intestinal inflammation. Octreotide (OCT) has potential applicable clinical value for treating intestinal injury according to previous studies, but the underlying molecular mechanisms have remained elusive. This article is based on a cell model of inflammation induced by lipopolysaccharide (LPS), aiming to explore the effects of OCT in protecting intestinal mucosal barrier function. A Cell Counting Kit­8 assay was used to determine cell viability and evaluate the effectiveness of OCT. Gene silencing technology was used to reveal the mediated effect of somatostatin receptor 2 (SSTR2). The changes in intestinal permeability were detected through trans­epithelial electrical resistance and fluorescein isothiocyanate­dextran 4 experiments, and the alterations in tight junction proteins were detected using immunoblotting and reverse transcription fluorescence­quantitative PCR technology. Autophagosomes were observed by electron microscopy and the dynamic changes of the autophagy process were characterized by light chain (LC)3­II/LC3­I conversion and autophagic flow. The results indicated that SSTR2­dependent OCT can prevent the decrease in cell activity. After LPS treatment, the permeability of monolayer cells decreased and intercellular tight junctions were disrupted, resulting in a decrease in tight junction protein zona occludens 1 in cells. The level of autophagy­related protein LC3 was altered to varying degrees at different times. These abnormal changes gradually returned to normal levels after the combined application of LPS and SSTR2­dependent OCT, confirming the role of OCT in protecting intestinal barrier function. These experimental results suggest that OCT maintains basal autophagy and cell activity mediated by SSTR2 in intestinal epithelial cells, thereby preventing the intestinal barrier dysfunction in inflammation injury.


Subject(s)
Lipopolysaccharides , Octreotide , Humans , Caco-2 Cells , Octreotide/pharmacology , Lipopolysaccharides/pharmacology , Intestinal Mucosa/metabolism , Tight Junction Proteins/metabolism , Autophagy , Inflammation/metabolism , Tight Junctions/metabolism , Permeability
19.
Nutr Rev ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626282

ABSTRACT

The gut barrier is the first line of defense against harmful substances and pathogens in the intestinal tract. The balance of proliferation and apoptosis of intestinal epithelial cells (IECs) is crucial for maintaining the integrity of the intestinal mucosa and its function. However, oxidative stress and inflammation can cause DNA damage and abnormal apoptosis of the IECs, leading to the disruption of the intestinal epithelial barrier. This, in turn, can directly or indirectly cause various acute and chronic intestinal diseases. In recent years, there has been a growing understanding of the vital role of dietary ingredients in gut health. Studies have shown that certain amino acids, fibers, vitamins, and polyphenols in the diet can protect IECs from excessive apoptosis caused by oxidative stress, and limit intestinal inflammation. This review aims to describe the molecular mechanism of apoptosis and its relationship with intestinal function, and to discuss the modulation of IECs' physiological function, the intestinal epithelial barrier, and gut health by various nutrients. The findings of this review may provide a theoretical basis for the use of nutritional interventions in clinical intestinal disease research and animal production, ultimately leading to improved human and animal intestinal health.

20.
Cell Biosci ; 14(1): 43, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561835

ABSTRACT

The prevalence of Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is increasing worldwide. The pathogenesis of CD is hypothesized to be related to environmental, genetic, immunological, and bacterial factors. Current studies have indicated that intestinal epithelial cells, including columnar, Paneth, M, tuft, and goblet cells dysfunctions, are strongly associated with these pathogenic factors. In particular, goblet cells dysfunctions have been shown to be related to CD pathogenesis by direct or indirect ways, according to the emerging studies. The mucus barrier was established with the help of mucins secreted by goblet cells. Not only do the mucins mediate the mucus barrier permeability and bacterium selection, but also, they are closely linked with the endothelial reticulum stress during the synthesis process. Goblet cells also play a vital role in immune response. It was indicated that goblet cells take part in the antigen presentation and cytokines secretion process. Disrupted goblet cells related immune process were widely discovered in CD patients. Meanwhile, dysbiosis of commensal and pathogenic microbiota can induce myriad immune responses through mucus and goblet cell-associated antigen passage. Microbiome dysbiosis lead to inflammatory reaction against pathogenic bacteria and abnormal tolerogenic response. All these three pathways, including the loss of mucus barrier function, abnormal immune reaction, and microbiome dysbiosis, may have independent or cooperative effect on the CD pathogenesis. However, many of the specific mechanisms underlying these pathways remain unclear. Based on the current understandings of goblet cell's role in CD pathogenesis, substances including butyrate, PPARγagonist, Farnesoid X receptor agonist, nuclear factor-Kappa B, nitrate, cytokines mediators, dietary and nutrient therapies were all found to have potential therapeutic effects on CD by regulating the goblet cells mediated pathways. Several monoclonal antibodies already in use for the treatment of CD in the clinical settings were also found to have some goblet cells related therapeutic targets. In this review, we introduce the disease-related functions of goblet cells, their relationship with CD, their possible mechanisms, and current CD treatments targeting goblet cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...