Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.418
Filter
1.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39235041

ABSTRACT

Understanding the combined effects of environmental heterogeneity and evolutionary processes on marine populations is a primary goal of seascape genomic approaches. Here, we utilized genomic approaches to identify local adaptation signatures in Littoraria flava, a widely distributed marine gastropod in the tropical West Atlantic population. We also performed molecular evolution analyses to investigate potential selective signals across the genome. After obtaining 6,298 and 16,137 single nucleotide polymorphisms derived from genotyping-by-sequencing and RNA sequencing, respectively, 69 from genotyping-by-sequencing (85 specimens) and four from RNA sequencing (40 specimens) candidate single nucleotide polymorphisms were selected and further evaluated. The correlation analyses support different evolutionary pressures over transcribed and non-transcribed regions. Thus, single nucleotide polymorphisms within transcribed regions could account for the genotypic and possibly phenotypic divergences in periwinkles. Our molecular evolution tests based on synonymous and non-synonymous ratio (kN/kS) showed that genotype divergences containing putative adaptive single nucleotide polymorphisms arose mainly from synonymous and/or UTR substitutions rather than polymorphic proteins. The distribution of genotypes across different localities seems to be influenced by marine currents, pH, and temperature variations, suggesting that these factors may impact the species dispersion. The combination of RNA sequencing and genotyping-by-sequencing derived datasets provides a deeper understanding of the molecular mechanisms underlying selective forces responses on distinct genomic regions and could guide further investigations on seascape genomics for non-model species.


Subject(s)
Adaptation, Physiological , Evolution, Molecular , Gastropoda , Polymorphism, Single Nucleotide , Animals , Gastropoda/genetics , Adaptation, Physiological/genetics , Genomics , Genotype , Genome
2.
eNeuro ; 11(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39256043

ABSTRACT

The goal of connectomics is to reveal the links between neural circuits and behavior. Larvae of the primitive chordate Ciona are well-suited to make contributions in this area. In addition to having a described connectome, Ciona larvae have a range of readily quantified behaviors. Moreover, the small number of neurons in the larval CNS (∼180) holds the promise of a comprehensive characterization of individual neurons. We present single-neuron predictions for glutamate receptor (GlutR) expression based on in situ hybridization. Included are both ionotropic receptors (AMPA, NMDA, and kainate) and metabotropic receptors. The predicted glutamate receptor expression dataset is discussed in the context of known circuits driving behaviors such as phototaxis, mechanosensation, and looming shadow response. The predicted expression of AMPA and NMDA receptors may help resolve issues regarding the co-production of GABA and glutamate by a subset of photoreceptors. The targets of these photoreceptors in the midbrain appear to express NMDA receptors, but not AMPA receptors. This is in agreement with previous results indicating that GABA is the primary neurotransmitter from the photoreceptors evoking a swimming response through a disinhibition mechanism and that glutamate may, therefore, have only a modulatory action in this circuit. Other findings reported here are more unexpected. For example, many of the targets of glutamatergic epidermal sensory neurons (ESNs) do not express any of the ionotropic receptors, yet the ESNs themselves express metabotropic receptors. Thus, we speculate that their production of glutamate may be for communication with neighboring ESNs, rather than to their interneuron targets.


Subject(s)
Receptors, Glutamate , Animals , Receptors, Glutamate/metabolism , Larva , Neurons/metabolism , Receptors, Ionotropic Glutamate/metabolism
3.
Conserv Biol ; 38(5): e14357, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39248756

ABSTRACT

Managing invasive species is crucial to mitigate their negative impacts on ecosystems, yet conflicts may arise when their social benefits are disregarded. Human pressure on the endemic-rich forests of São Tomé has been high since the island was discovered by the Portuguese in the 15th century, and numerous species have been introduced. These include the invasive West African giant land snail (Archachatina marginata), which was introduced in the mid-20th century, is now widespread on the island, and is a potential threat to native flora and fauna. We assessed the frequency of consumption of this species and its socioeconomic importance to people across the island with household questionnaires, focus group discussions, and semistructured interviews. We explored the prevalence and potential drivers of use (e.g., wealth, household composition, and diversity of occupations) and characterized the commodity chain to identify demographic groups linked to the snail trade. We interviewed 672 people (1 person per household), conducted 6 focus groups, and interviewed 80 key actors belonging to 5 subcategories. The snail was the most widely consumed bushmeat and an important source of income, particularly for women and unemployed youth. Insecure and scarce livelihood alternatives, mostly in rural areas, were reported as drivers for trade involvement. Snail harvesting was more frequent in poorer households with low occupational diversity. Selling tended to occur in households that were well-established in the community and had a higher proportion of children. Both were stimulated by the proximity of communities to the native forest. Buying snails was common in all demographic groups, but it was linked to wealth and occupational diversity. Interventions to manage the impact of this introduced species on the valuable ecosystems of the island should involve multiple sectors of society to ensure societal support. This requires robust consideration of the welfare of vulnerable demographic groups that benefit from the species.


Importancia socioeconómica y comercial de un caracol invasor en la isla rica en endemismos de Santo Tomé, África Central Resumen La gestión de las especies invasoras es crucial para mitigar sus efectos negativos en los ecosistemas, aunque pueden surgir conflictos cuando no se tienen en cuenta sus beneficios sociales. La presión humana sobre los bosques de Santo Tomé, ricos en endemismos, ha sido alta desde que la isla fue colonizada por los portugueses en el siglo XV y desde entonces se han introducido numerosas especies. Una de ellas es el caracol terrestre gigante de África Occidental (Archachatina marginata), introducido a mediados del siglo XX y que ahora tiene una distribución amplia en la isla y es una amenaza potencial para la flora y la fauna autóctonas al ser invasor. Evaluamos la frecuencia de consumo de esta especie y su importancia socioeconómica para la población de toda la isla mediante encuestas en hogares, grupos de discusión y entrevistas semiestructuradas a actores clave de cinco categorías. Exploramos la prevalencia y los posibles factores impulsores del consumo (por ejemplo, la riqueza, la composición de los hogares y la diversidad de ocupaciones) y caracterizamos la cadena comercial para identificar los grupos demográficos vinculados al comercio de caracoles. Entrevistamos a 672 personas (una persona por hogar), realizamos seis grupos de discusión y entrevistamos a 80 actores clave. El caracol fue la carne de caza más consumida y una importante fuente de ingresos, sobre todo para las mujeres y los jóvenes desempleados. La inseguridad y la escasez de medios de subsistencia, sobre todo en las zonas rurales, fueron los factores que impulsaron la participación en el mercado. La colecta de caracoles fue más frecuente en los hogares más pobres y con escasa diversidad ocupacional. La venta tendía a producirse en hogares bien establecidos en la comunidad y con una mayor proporción de niños. Ambos factores se vieron estimulados por la proximidad de las comunidades al bosque nativo. La compra de caracoles fue común en todos los grupos demográficos, pero estuvo vinculada a la riqueza y a la diversidad ocupacional. Las intervenciones para gestionar el impacto de esta especie introducida en los valiosos ecosistemas de la isla deben implicar a múltiples sectores de la sociedad para garantizar su apoyo. Para ello es necesario tener muy en cuenta el bienestar de los grupos demográficos vulnerables que se benefician de la especie.


Subject(s)
Conservation of Natural Resources , Introduced Species , Snails , Socioeconomic Factors , Animals , Snails/physiology , Humans , Commerce , Female , Male , Adult , Middle Aged , Africa, Central , Islands , Adolescent , Young Adult
4.
Ecol Evol ; 14(9): e70234, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219571

ABSTRACT

Invertebrates greatly support the growth, development, and reproduction of insectivorous birds. However, the influence of human activity (e.g., pesticide use, deforestation, and urbanization) inevitably leads to a decrease in global arthropods. The diversity and variation in invertebrate diet influence the food composition of birds, especially species living in rapidly changing environments, such as the Tibetan Plateau. However, little is known of the seasonal variation in invertebrate diet in response to environmental changes. Here, we characterized the invertebrate diet composition in pre- and post-breeding black-necked crane (Grus nigricollis) using fecal metabarcoding. We identified 38 invertebrate genera; the top three were Tipula (82.1% of relative abundance), Ceramica (3.0%), and unclassified_Hymenoptera (2.5%), with Tipula predominated the diet in both seasons. We also observed 20 and 16 unique genera in the pre- and post-breeding periods, and the genera composition was distinct between seasons (R = .036, p = .024). In pre-breeding, black-necked cranes tended to consume more diverse foods, and individual cranes exhibited greater heterogeneity at the genus level. At the genera and species level, pre-breeding black-necked cranes showed a wider dietary niche than post-breeding cranes. We observed season-specific features, with Tipula (common crane fly) and Stethophyma (grasshoppers) being enriched in the post-breeding period and Ceramica (moth) being more abundant in the pre-breeding period. Three Tipula species had the greatest importance in discriminating between seasonal diets. This study demonstrated a seasonal pattern of invertebrate diet in the black-necked crane, suggesting diet composition in response to resource and species availability. These results elaborate on the foraging ecology of highland birds and can inform the management of black-necked crane conservation.

5.
Article in English | MEDLINE | ID: mdl-39279349

ABSTRACT

Invertebrates and microorganisms are important but climate-dependent agents of wood decomposition globally. In this meta-analysis, we investigated what drives the invertebrate effect on wood decomposition worldwide. Globally, we found wood decomposition rates were on average approximately 40% higher when invertebrates were present compared to when they were excluded. This effect was most pronounced in the tropics, owing mainly to the activities of termites. The invertebrate effect was stronger for woody debris without bark as well as for that of larger diameter, possibly reflecting bark- and diameter-mediated differences in fungal colonisation or activity rates relative to those of invertebrates. Our meta-analysis shows similar overall invertebrate effect sizes on decomposition of woody debris derived from angiosperms and gymnosperms globally. Our results suggest the existence of critical interactions between microorganism colonisation and the invertebrate contribution to wood decomposition. To improve biogeochemical models, a better quantification of invertebrate contributions to wood decomposition is needed.

6.
Chemosphere ; : 143315, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284551

ABSTRACT

Glitter is a type of microplastic, and thus there is a need to assess its potential impacts on the environment and to assess the potential for non-plastic cellulose nanocrystal structurally colored glitters as safe and sustainable replacements. The ecotoxicity of glitter has been mostly ignored in the research literature, with only a few published studies focusing on aquatic organisms. Therefore, an exposure experiment was conducted to examine the impact of conventional polyethylene terephthalate (PET) glitter as well as untreated and heat-treated cellulose nanocrystal (CNC) based one on the survival, reproduction, and length of Folsomia candida (springtail). Folsomia candida reproduction was reduced by 43% (P= 0.009) after exposure to PET glitter at 1000 mg/kg, while no significant effects were observed on F. candida survival and length. In contrast, there were no significant impacts on F. candida survival, length, or reproduction when exposed to untreated or heat-treated CNC glitter. These results indicate that exposure to PET glitter may impact soil invertebrates at the population level, and that CNC glitter has potential as a biodegradable non-plastic alternative to PET glitter to decrease detrimental effects on soil ecosystems.

7.
Environ Sci Technol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231302

ABSTRACT

Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.

8.
Trends Genet ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39277449

ABSTRACT

Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.

9.
Am J Vet Res ; : 1-9, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39260402

ABSTRACT

OBJECTIVE: The objective of this study was to analyze the use of rebound tonometry, as a noninvasive diagnostic tool, in arachnids. METHODS: 5 juvenile (yearling) female and 1 juvenile male curlyhair tarantulas (Tliltocatl albopilosus, previously Brachypelma albopilosum) were used to track estimated ventral opisthosoma pressures over a 9-month period of time. Younger, growing animals were selected as they are more likely than adults to go through multiple molts throughout the 9 months of the study length. An iCare TONOVET TV01 rebound tonometer was used to measure the estimated ventral opisthosoma pressures of the spiders. Measurements were obtained from the ventral opisthosoma, 1 of the thinnest areas of exocuticle throughout the body. Readings were obtained once per week from the ventral opisthosoma for the first 2 months, then once every 2 weeks for 1 month, then back to once per week for the remainder of the study. Additional measurements were obtained following each ecdysis, after a 2% body weight sampling of hemolymph, and at the end of the study to evaluate readings in response to induction of general anesthesia with 5% isoflurane gas and oxygen flow at 2 L/min for 10 minutes. RESULTS: The average of all estimated ventral opisthosoma pressure when spiders were not in molt was 26.19 mm Hg (SD, 3.54), with a statistically significant decrease postmolt to an average of 15.31 mm Hg (SD, 3.81), followed by a gradual increase back to premolt pressures over a 3-week period with an average of 22 days (SD, 1.93). Estimated ventral opisthosoma pressures decreased post hemolymph removal. There is not sufficient evidence that estimated ventral opisthosoma pressures changed over time following the anesthesia. CLINICAL RELEVANCE: This study demonstrates that tonometry can be used to generally assess the estimated ventral opisthosoma pressure, which could correlate with where a spider is in an ecdysis cycle.

10.
Ecotoxicol Environ Saf ; 285: 117035, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39276649

ABSTRACT

Growing evidence has reported that diphenhydramine (DPH), an ionisable antihistamine, is widely present in surface waters across the world. Relative to vertebrates studied, its impact on invertebrates, particularly concerning cytochrome P450 (CYP) metabolism and oxidative stress, remains poorly understood. In this study, we aimed to investigate the effects of 2, 20, and 200 µg/L DPH on marbled crayfish (Procambarus virginalis) after 96-h exposure. Specifically, we assessed CYP activity, antioxidant enzyme responses, and acetylcholinesterase (AChE) activity in gills, muscle, and hepatopancreas. The crayfish CYP metabolised fluorogenic CYP-metabolic substrates of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) and dibenzylfluorescein (DBF), which evidenced the activity of CYP2C and CYP3A isoforms, well known in mammalian detoxification metabolism. Both BFC and DBF dealkylations showed a positive correlation with each other but were negatively correlated to water and haemolymph DPH concentrations. Exposure to 200 µg/L DPH elicited an apparent inhibition trend, albeit not significant, in BFC- and DBF-transformation activities in crayfish. Other tested 7-benzyloxyresorufin and 7-pentoxyresorufin substrates were poorly metabolised, suggesting their relatively low activity or the lack of mammalian-like CYP1A and CYP2B isoforms in marbled crayfish. The significant modulation of antioxidant enzymes was demonstrated in gills and hepatopancreas. The exposure to DPH did not alter the activity of AChE. Integrated biomarker response version 2 showed the highest cumulative effect of DPH exposure on gills, implying that gill tissue is the most reliable matrix for evaluating DPH toxicity. Activities of glutathione peroxidase and glutathione-S-transferase were the most deviated determinants among the investigated biomarkers, providing insights into the DPH toxicity in crayfish. This study brought the first insight into utilising the fluorogenically active substrates BFC and DBF to demonstrate the CYP involvement in the detoxification metabolism in marbled crayfish. Further, our results provided information on valuable antioxidant defence mechanisms and biomarker responses for a future DPH toxicity assessment in aquatic organisms.

11.
Mar Pollut Bull ; 207: 116716, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39222553

ABSTRACT

Ship ballast residual sediments are an important vector of introduction for non-indigenous species. We evaluated the proportion of residual sediments and associated organisms released during de-ballasting operations of a commercial bulk carrier and estimated a total residual sediment accumulation of ∼13 t, with accumulations of up to 20 cm in some tank areas that had accumulated over 11 years. We observed interior hull-fouling (anemones, hydrozoans, and bryozoans) and high abundances of viable invertebrate resting stages and dinoflagellate cysts in sediments. Although we determined that <1 % of residual sediments and associated resting stages were resuspended and released into the environment during individual de-ballasting events, this represents a substantial inoculum of 21 × 107 viable dinoflagellate cysts and 7.5 × 105 invertebrate resting stages with many taxa being nonindigenous, cryptogenic, or toxic/harmful species. The methods used and results will help estimate propagule pressure associated with this pathway and will be relevant for residual sediments and nonindigenous species management.


Subject(s)
Geologic Sediments , Ships , Geologic Sediments/chemistry , Animals , Invertebrates/physiology , Dinoflagellida/physiology , Environmental Monitoring , Introduced Species
12.
Mar Pollut Bull ; 208: 116956, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303550

ABSTRACT

This study investigated differences in total biomass (ash-free dry weight) of the periphyton and autotrophic biomass (chlorophyll-a content) of benthic diatoms in the absence or presence (No Grazer vs With Grazer) of two invertebrate grazers (Stichopus cf. horrens and Trochus maculatus) under simulated ambient (PRESENT), independent ocean acidification (OA) and warming (OW), and their combination (FUTURE) over an eight-day period. In the absence of a grazer, there were no significant differences in the average of the total and autotrophic biomass among treatments for both experiments. Stichopus significantly reduced the total and autotrophic biomass after 1 day, except under OW. Trochus significantly reduced the total biomass in the OA and OW treatments after 5 days, and the autotrophic biomass in the OA treatment after 1 and 5 days of grazing. In treatments where total and autotrophic biomass were not reduced, nutrients from the fecal matter and metabolic wastes of grazers seemingly stimulated the regeneration of microalgal biomass. The amount of fecal matter produced also affected the rate of microalgal renewal. In addition, due to the unexpected difference in seawater nutrient concentration during the two experiments, comparison of primary production under PRESENT was done to tease out nutrient effects. In PRESENT, autotrophic biomass was higher in Experiment 1 than Experiment 2, which was likely influenced by differences in nutrient concentrations. Results of this study elucidate underlying mechanisms in microalgal interactions with biotic and abiotic factors in tropical systems under changing ocean conditions.

13.
Sci Rep ; 14(1): 19553, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174634

ABSTRACT

The nitidulid beetle Carpophilus truncatus is rapidly becoming a major pest of nut crops around the world. This insect first infested Australian almonds in 2013 and has since escalated to be the preeminent insect pest for the industry. Data pertaining to C. truncatus distribution are scant, but without awareness of its origin, distribution, and ecological factors that influence distribution, efforts to understand and manage the insect as a pest are stymied. Here, we employ an integrative approach to gain a multifaceted understanding of the distribution of C. truncatus in Australia. Methods employed were (1) reviewing historical records in insect collections to establish the presence of C. truncatus prior to commercial almond horticulture, (2) field trapping of insects to establish presence in regions of interest, (3) laboratory trials to determine the thermal limits of the organism, and (4) correlative species distribution modelling to describe its current distribution. We find that C. truncatus is more widespread across Australia than was previously known, with historical records preceding commercial almond production in Australia by a century. The methods developed in this study can be applied elsewhere in the world where C. truncatus is an emerging pest, or to novel pest species as they arise with increasing frequency in a globalised and warming world.


Subject(s)
Coleoptera , Animals , Australia , Coleoptera/physiology , Animal Distribution , Prunus dulcis , Crops, Agricultural/parasitology
14.
Article in English | MEDLINE | ID: mdl-39141266

ABSTRACT

Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.

15.
Neurochem Res ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093361

ABSTRACT

The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond traditional animal models. In this study, we report on the identification and characterization of a putative fatty acid amide hydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. mRNA encoding Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and sequence analysis suggests that this is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by a mutation at a conserved catalytic serine. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.

16.
Ecotoxicology ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215898

ABSTRACT

In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO4; ZnCl2; CdCl2 and HgCl2). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.

17.
Sci Total Environ ; 950: 175282, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111433

ABSTRACT

Outbreaks of corallivorous Crown of Thorns Starfish (Acanthaster spp.; CoTS) cause substantial coral mortality throughout the Indo-Pacific, particularly on the Great Barrier Reef (GBR). Refining CoTS population density modelling and understanding the disparities between real-world observations and model predictions is crucial for developing effective control strategies. Using a spatially explicit ecosystem model of the GBR, we compared CoTS density model predictions to observations and incorporated a new zone-specific mortality rate to account for differences in predation of CoTS between fished and protected reefs. We found high congruence between predictions and observations: ∼81 % of categorical reef level CoTS densities matched or only differed by one category. However, underpredictions increased with higher observed densities. Zone-specific CoTS mortality reduced severe underpredictions from 7.1 % to 5.6 %, which is critical for managers as underpredictions indicate missing outbreaks where targeted culling is necessary, but also lead to underestimated coral loss attributed to CoTS outbreaks. Reef protection status affected prediction accuracy, highlighting the importance of further research on in situ CoTS mortality rates. The location of a reef inside or outside the "initiation box", a speculative area of primary outbreaks (i.e., initial abrupt population increases) on the GBR, also influenced accuracy, with exact predictions more likely outside. Accurately modelling initiation box dynamics is challenging due to limited empirical data on CoTS outbreaks, highlighting the need for focussed research on outbreak dynamics to enhance predictive accuracy. Spatial factors, such as region and shelf position, contributed to the variance between observations and predictions, underscoring the importance of the spatial-temporal context of each observation. Observations of CoTS can help refine model predictions, guide targeted control measures, and contribute to effective ecosystem management for the long-term resilience of the GBR and other reefs targeted by CoTS throughout the Indo-Pacific.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Starfish , Animals , Conservation of Natural Resources/methods , Anthozoa , Population Density , Environmental Monitoring
18.
Environ Toxicol Chem ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189720

ABSTRACT

Effect assessments of metals are mostly based on single-metal, single-species tests, thereby ignoring metal-mixture effects and indirect effects through species interactions. We tested the combined effects of metal and species interactions in two-trophic algal-daphnid microcosms. Metal-mixture effects on daphnid communities may propagate from effects on the generally more sensitive algal communities. Four different algal communities (three species each), with and without addition of the same daphnid community (three species) were exposed to single metals and one metal mixture (17:17:51 µg/L Ni:Cu:Zn). Daphnid densities were negatively affected by metals in the two-trophic test, the magnitude of which depended on the algal community composition. Algal densities were overall positively affected by the metals in the two-trophic test but negatively in the single-trophic test, illustrating an indirect positive effect in the two-trophic system due to a reduced grazing pressure. Metal effects on daphnid communities in the two-trophic test (day 21) were correlated with metal effects on the single-trophic-level algal communities during exponential growth (R2 = 0.55, p = 0.0011). This finding suggests that metal effects propagate across trophic levels due to a reduced food quantity. However, the indirect positive effects on algal densities, resulting in abundant food quantity, suggests that metal effects can also propagate to daphnids due to a reduced food quality (not measured directly). Metal-mixture interactions on daphnid densities varied during exposure, but were additive or antagonistic relative to independent action when final daphnid densities were considered (day 56). This suggests stronger indirect effects of the mixture compared with the single metals. Overall, our study highlights the dynamic aspect of community-level effects, which empirical reference models such as independent action or concentration addition cannot predict. Environ Toxicol Chem 2024;00:1-15. © 2024 SETAC.

19.
Adv Neurobiol ; 39: 19-49, 2024.
Article in English | MEDLINE | ID: mdl-39190070

ABSTRACT

Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.


Subject(s)
Caenorhabditis elegans , Neuroglia , Animals , Neuroglia/metabolism , Models, Animal
20.
Zookeys ; 1209: 315-330, 2024.
Article in English | MEDLINE | ID: mdl-39175836

ABSTRACT

Three new species of the genus Belisana Thorell, 1898 are described from karst caves in Guangxi, China: Belisanalangping Zhang, Li & Yao, sp. nov. (♂♀), B.lingui Zhang, Li & Yao, sp. nov. (♂♀), and B.tianyang Zhang, Li & Yao, sp. nov. (♂♀). In addition, a list of all Belisana species from Guangxi is also provided.

SELECTION OF CITATIONS
SEARCH DETAIL