Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Adv Mater ; 36(39): e2405860, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39108194

ABSTRACT

Narrow-bandgap Sn-Pb alloying perovskites showcased great potential in constructing multiple-junction perovskite solar cells (PSCs) with efficiencies approaching or exceeding the Shockley-Queisser limit. However, the uncontrollable surface metal abundance (Sn2+ and Pb2+ ions) hinders their efficiency and versatility in different device structures. Additionally, the undesired Pb distribution mainly at the buried interface accelerates the Pb leakage when devices are damaged. In this work, a novel strategy is presented to modulate crystallization kinetics and surface metal abundance of Sn-Pb perovskites using a cobweb-like quadrangular macrocyclic porphyrin material, which features a molecular size compatible with the perovskite lattice and robustly coordinates with Pb2+ ions, thus immobilizing them and increasing surface Pb abundance by 61%. This modulation reduces toxic Pb leakage rates by 24-fold, with only ∼23 ppb Pb in water after severely damaged PSCs are immersed in water for 150 h.This strategy can also enhance chemical homogeneity, reduce trap density, release tensile strain and optimize carrier dynamics of Sn-Pb perovskites and relevant devices. Encouragingly, the power conversion efficiency (PCEs) of 23.28% for single-junction, full-stack devices and 21.34% for hole transport layer-free Sn-Pb PSCs are achieved.Notably, the related monolithic all-perovskite tandem solar cell also achieves a PCE of 27.03% with outstanding photostability.

2.
Nano Lett ; 24(34): 10443-10450, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39140834

ABSTRACT

Counterion adsorption at the solid-liquid interface affects numerous applications. However, the counterion adsorption density in the Stern layer has remained poorly evaluated. Here we report the direct determination of surface charge density at the shear plane between the Stern layer and the diffuse layer. By the Grahame equation extension and streaming current measurements for different solid surfaces in different aqueous electrolytes, we are able to obtain the counterion adsorption density in the Stern layer, which is mainly related to the surface charge density but is less affected by the bulk ion concentration. The charge inversion concentration is further found to be sensitive to the ion type and ion valence rather than to the charged surface, which is attributed to the ionic competitive adsorption and ion-ion correlations. Our findings offer a framework for understanding ion distribution in many physical and chemical processes where the Stern layer is ubiquitous.

3.
Adv Colloid Interface Sci ; 331: 103165, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964197

ABSTRACT

Colloid particles (CP, 10-8-10-6 m = 10-1000 nm) are used as models for atom scale processes, such as crystallization since the process is experimentally observable. Packing of atoms in crystals resemble mono-, bi-, and trimodal packing of noncharged hard spheres (particles). When the size of one particle exceeds the two others an excluded volume consisting of small particles is created around large particles. This is also the case when colloid particles are dispersed in water. The formation of an excluded volume does not require attraction forces, but it is enforced by the presence of dissolved primary (cations) and secondary (protons of surface hydroxyls) potential determining ions. The outcome is an interfacial solid-liquid charge. This excluded volume, denoted Stern layer is characterized by the surface potential and charge density. Charge neutrality is identified by point of zero charge (pHpzc and pcpzc). Outside Stern layer another excluded volume is formed of loosely bound counterions which interact with Stern layer. The extent of this diffuse layer is given by inverse Debye length and effective ζ-potential. The overall balance between attractive and repulsive energies is provided by Derjaguin-Landau-Veerwey-Overbeek (DLVO) model. Charge neutrality is identified at isoelectric point (pHiep and pciep). The dependence of viscosity and yield stress on shear rate may be modeled by von Smoluchowski's volumetric collision frequency multiplied by some total interaction energy given by DLVO model. Equilibrium and dynamic models for settling and enforced particle movement (viscosity) are presented. Both compressive yield stress (sedimentation) and cohesive energy (viscoelasticity) are characterized by power law exponents of volume fraction. The transition of disperse suspensions (sols) to spanning clusters (gels) is identified by oscillatory rheology. The slope of linear plots of logarithmic storage (G´) and loss (G") moduli against logarithm of frequency or logarithm of volume fraction provide power law exponents from the slopes. These exponents relate to percolation and fractal dimensions characterizing the particle network. Moreover, it identifies the structure formation process either as diffusion limited cluster-cluster (DLCCA) or as reaction limited cluster-cluster (RLCCA) aggregation.

4.
Small ; 20(14): e2307388, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38059741

ABSTRACT

The application of metal batteries is seriously affected by active ions transport and deposition stability during operation. This article takes water-based Zn metal electrodes as an example to analyze the factors that affect ion distribution and the impact of ion distribution on electrodeposition morphology through electrochemical model simulation calculation, in situ observation and electrochemical experiment: 1) high concentration will reduce the concentration polarization and the overpotential; 2) The passage of active ions through channels are facilitated by small anion (Cl-) rather than bigger one (SO4 2-), which means small deposition overpotential; 3) The transportability-reaction properties of cations (Zn2+, Li+, Na+ and H+) depends on their concentration, solvent coordination structure, and the energy changes during redox reactions. Based on the diffusion and reaction properties, a Li+ coupled Zn2+ electrolyte is designed to achieve the rapid transportation of doped ions to cover uneven growth sites and maintain a stable interface for the steady deposition of active Zn2+, guiding the interface design for high stability metal batteries in addition to the traditional addition of organic solvents.

5.
Chemphyschem ; 24(23): e202300062, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37679310

ABSTRACT

Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br- counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.

6.
Biology (Basel) ; 12(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37106781

ABSTRACT

The disordered nature of Intrinsically Disordered Proteins (IDPs) makes their structural ensembles particularly susceptible to changes in chemical environmental conditions, often leading to an alteration of their normal functions. A Radial Distribution Function (RDF) is considered a standard method for characterizing the chemical environment surrounding particles during atomistic simulations, commonly averaged over an entire or part of a trajectory. Given their high structural variability, such averaged information might not be reliable for IDPs. We introduce the Time-Resolved Radial Distribution Function (TRRDF), implemented in our open-source Python package SPEADI, which is able to characterize dynamic environments around IDPs. We use SPEADI to characterize the dynamic distribution of ions around the IDPs Alpha-Synuclein (AS) and Humanin (HN) from Molecular Dynamics (MD) simulations, and some of their selected mutants, showing that local ion-residue interactions play an important role in the structures and behaviors of IDPs.

7.
ACS Appl Mater Interfaces ; 15(9): 11970-11976, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36820648

ABSTRACT

The development of metal ions-incorporated soft materials is of great importance in the present scenario due to their essential requirement in the fabrication of the components such as ionic diodes and electrochemical transistors for soft electronic devices. In the current work, to fabricate a soft ionic diode, two distinct Li+-driven conductive metallohydrogels, namely, MG-Zn and MG-Cu, have been obtained by individually treating a LiOH deprotonated pregelator (H5APL) with Zn(OAc)2 or Cu(OAc)2. The pregelator and metallohydrogels have been well characterized by using various instrumental techniques, which supports their proposed formulations. Field emission scanning electron microscopic images of metallohydrogels reveal the presence of a fibrous network, which helps to create a gel matrix, whereas the rheological experimental results ascertain the true gel phase nature of the synthesized metallohydrogels. The obtained MG-Zn and MG-Cu metallohydrogels were subjected to electrochemical impedance spectroscopic and band gap measurements. The MG-Zn and MG-Cu showed ionic conductivities of 1.02 × 10-3 and 1.14 × 10-3 S/cm, along with band gaps of 2.82 and 2.85 eV, respectively, thus claiming their suitability for device fabrication. Further, the fabricated metallohydrogel-based ionic diode shows appreciable ability to rectify the ionic current with the forward and reverse bias currents of 19 and 1.9 mA at +/-4 V bias potential. Based on all the experimental results, the mechanism has been well established for the rectification behavior in the fabricated metallohydrogel ionic diode.

8.
J Geophys Res Space Phys ; 128(7): e2022JA031221, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38439786

ABSTRACT

Magnetosheath jets are localized plasma structures with high dynamic pressure which are frequently observed downstream of the Earth's bow shock. In this work we analyze Magnetospheric MultiScale magnetic field and plasma data and show that jets can be found in the quasi-perpendicular magnetosheath in regions permeated by Mirror mode waves (MMWs). We show that structures identified as jets by their enhanced dynamic pressure can have very different internal structure, with variable signatures in magnetic field magnitude and components, velocity, and density and can be associated to ion distribution functions of various types. This suggests that jets observed in the quasi-perpendicular magnetosheath are generated by different mechanisms. We find that jets can be related to traveling foreshocks, flux transfer events, and some have MMWs inside them. Our results suggest that some jets have a local source and their formation does not depend on upstream structures. We find that different types of ion distributions can exist inside the jets, while in some cases anisotropic distributions are present, in others counterstreaming distributions exist. We also show that for jets with MMWs inside them, ion distributions can be modulated. This highlights the importance of using ion distributions to identify and classify different types of jets.

9.
Membranes (Basel) ; 12(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363597

ABSTRACT

A novel method has been proposed for rapid determination of principal transmembrane transport parameters for solute electroactive co-ions/molecules, in relation to the crossover problem in power sources. It is based on direct measurements of current for the electrode, separated from solution by an ion-exchange membrane, under voltammetric and chronoamperometric regimes. An electroactive reagent is initially distributed within the membrane/solution space under equilibrium. Then, potential change induces its transformation into the product at the electrode under the diffusion-limited regime. For the chronoamperometric experiment, the electrode potential steps backward after the current stabilization, thus inducing an opposite redox transformation. Novel analytical solutions for nonstationary concentrations and current have been derived for such two-stage regime. The comparison of theoretical predictions with experimental data for the Br2/Br- redox couple (where only Br- is initially present) has provided the diffusion coefficients of the Br- and Br2 species inside the membrane, D(Br-) = (2.98 ± 0.27) 10-6 cm2/s and D(Br2) = (1.10 ± 0.07) 10-6 cm2/s, and the distribution coefficient of the Br- species at the membrane/solution boundary, K(Br-) = 0.190 ± 0.005, for various HBr additions (0.125-0.75 M) to aqueous 2 M H2SO4 solution. This possibility to determine transport characteristics of two electroactive species, the initial solute component and its redox product, within a single experiment, represents a unique feature of this study.

10.
Carbohydr Polym ; 297: 120010, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184165

ABSTRACT

Discovering principles to tune the heat-transport properties of cellulose nanofibril (CNF) films will open the door for the development of biomass-derived heat-transfer materials and break away from existing petroleum-based polymer composites. In this study, we added various multivalent metal ions to CNF films with surface carboxy groups formed by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation and measured their thermal diffusivities in the dry state by an original method to verify the tunability of the thermal diffusivity. We found that the in-plane thermal diffusivity of the film is inversely proportional to the ionic radius and directly proportional to the Pauling electro-negativity. The CNF film with proton-neutralized carboxyl groups showed the highest level of thermal diffusivity among the films with various metal ions. Molecular dynamics simulations clarified that the spatial distribution of the introduced ions is determined by the closest distance between the cation and carboxylate oxygen atom of the TEMPO-oxidized CNF surface.


Subject(s)
Nanofibers , Petroleum , Cellulose , Cyclic N-Oxides , Oxygen , Polymers , Protons
11.
Chemistry ; 28(19): e202103300, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34729826

ABSTRACT

The main limitation of lithium (Li) metal anodes lies in their severe dendrite growth due to nonuniform Li+ flux and sluggish Li+ transportation at the anode surface. Fabricating artificial protective overlayer with tunable surficial properties on Li metal is a precise and effective strategy to relieve this problem. In this Concept article, we focus on the basic principles of regulating interfacial Li+ through artificial protective overlayers and summarize the material preparation as well as structural design of these overlayers. The remaining challenges and promising directions of artificial protective overlayers are then highlighted to provide clues for the practical application of Li metal anodes.

12.
Biochim Biophys Acta Biomembr ; 1863(11): 183724, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34364888

ABSTRACT

This work reports the distribution constant of a target ion and a counter-ion between an aqueous phase and an artificial bilayer lipid membrane (BLM) and its influence to the ionic permeability through a BLM. A theoretical formula for ionic permeability through a BLM based on the distribution of the target ion and the counter-ion is also proposed and validated by analyzing the flux of a fluorescent cation [rhodamine 6G (R6G+)] through the BLM in the presence of counter-ions (X- = Br-, BF4-, and ClO4-). The transmembrane flux was evaluated by simultaneous measurement of the transmembrane current density and the transmembrane fluorescence intensity as a function of the membrane potential. The distribution constant of R6G+ and X- between the aqueous and BLM phases was determined by a liposome-extraction method. The measured ionic permeability exhibited non-linear dependent on the aqueous concentration of R6G+ or X-, but proportional to the concentration of R6G+ and X- inside the BLM evaluated from the distribution constant of R6G+ and X-. The proportionality demonstrates that the distribution of cations and anions between the aqueous and BLM phases dominates the flux of ion transport through the BLM. The proposed formula can express the dependence of the transmembrane current on the membrane potential and the concentrations of R6G+ and X- in the aqueous phase.


Subject(s)
Lipid Bilayers/chemistry , Ions , Permeability , Rhodamines/chemistry
13.
J Exp Bot ; 72(8): 3279-3293, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33543268

ABSTRACT

Lack of O2 and high concentrations of iron (Fe) and manganese (Mn) commonly occur in waterlogged soils. The development of a barrier to impede radial O2 loss (ROL) is a key trait improving internal O2 transport and waterlogging tolerance in plants. We evaluated the ability of the barrier to ROL to impede the entry of excess Fe into the roots of the waterlogging-tolerant grass Urochloa humidicola. Plants were grown in aerated or stagnant deoxygenated nutrient solution with 5 µM or 900 µM Fe. Quantitative X-ray microanalysis was used to determine cell-specific Fe concentrations at two positions behind the root apex in relation to ROL and the formation of apoplastic barriers. At a mature zone of the root, Fe was 'excluded' at the exodermis where a suberized lamella was evident, a feature also associated with a strong barrier to ROL. In contrast, the potassium (K) concentration was similar in all root cells, indicating that K uptake was not affected by apoplastic barriers. The hypothesis that the formation of a tight barrier to ROL impedes the apoplastic entry of toxic concentrations of Fe into the mature zones of roots was supported by the significantly higher accumulation of Fe on the outer side of the exodermis.


Subject(s)
Oxygen , Plant Roots , Iron , Poaceae , Soil
14.
J Am Soc Mass Spectrom ; 32(1): 33-45, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-32597645

ABSTRACT

The surface excess charge layer (SECL) in droplets has often been associated with distinct chemistry. We examine the effect of the nature of ions in the composition and structure of SECL by using molecular dynamics. We find that in the presence of simple ions the thickness of SECL is invariant not only with respect to droplet size but also with respect to the nature of the ions. In the presence of simple ions, this layer has a thickness of ∼1.5-1.7 nm but in the presence of macroions it may extend to ∼2.0 nm. The proportion of ions contained in SECL depends on the nature of the ions and the droplet size. For the same droplet size, I- and model H3O+ ions show considerably higher concentration than Na+ and Cl- ions. We identify the maximum ion concentration region, which, in nanodrops, may partially overlap with SECL. As the relative shape fluctuations decrease when microdrop size is approached, the overlap between SECL and maximum ion concentration region increases. We suggest the extension of the bilayer droplet structure assumed in the equilibrium partitioning model of Enke to include the maximum ion concentration region that may not coincide with SECL in nanodrops. We compute the ion concentrations in SECL, which are those that should enter the kinetic equation in the ion-evaporation mechanism, instead of the overall drop ion concentration that has been used.

15.
PeerJ ; 8: e8726, 2020.
Article in English | MEDLINE | ID: mdl-32195053

ABSTRACT

BACKGROUND: Saline-sodic soils are widely distributed in arid and semi-arid regions around the world. High levels of salt and sodium inhibit the growth and development of crops. However, there has been limited reports on both osmotic potential in soil solutions (OPss) and characteristics of Na+ and K+ absorption in rice in saline-sodic soils under various amendments application. METHODS: A field experiment was conducted between 2009 and 2017 to analyze the influence of amendments addition to saline-sodic soils on rice growth and yield. Rice was grown in the soil with no amendment (CK), with desulfurization gypsum (DG), with sandy soil (SS), with farmyard manure (FM) and with the mixture of above amendments (M). The osmotic potential in soil solution, selective absorption of K+ over Na+ (SA), selective transport of K+ over Na+ (ST), the distribution of K+ and Na+and yield components in rice plants were investigated. RESULTS: The results indicated that amendments application have positive effects on rice yield. The M treatment was the best among the tested amendments with the highest rice grain yield. M treatment increased the OPss values significantly to relieve the inhibition of the water uptake by plants. Additionally, the M treatment significantly enhanced K+ concentration and impeded Na+ accumulation in shoots. SA values were reduced while ST values were increased for all amendments. In conclusion, a mixture of desulfurization gypsum, sandy soil and farmyard manure was the best treatment for the improvement of rice growth and yield in the Songnen Plain, northeast China.

16.
Ecotoxicol Environ Saf ; 195: 110437, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32193020

ABSTRACT

More research about branch order-specific accumulation of toxic ions in root systems is needed to know root branch-related responses in growth and physiology. In this study, we used Populus deltoides females and males as a model to detect sex-specific differences in physiology, biochemistry, ultrastructure of absorbing roots and distribution of toxic ions in heterogeneous root systems under Cd, salinity and combined stress. Healthy annual male and female plants of P. deltoides were cultivated in soils including 5 mg kg-1 of Cd, 0.2% (w/w) of NaCl and their combination for a growth season. Our results are mainly as follows: (1) females suffered more growth inhibition, root biomass decline, root viability depression, and damage to distal root cells, but lower ability to scavenge reactive oxygen species (ROS) than the males under all stresses; (2) In both sexes, salinity adopted in the present study caused more significant negative effects on growth and organelles integrity than Cd stress, while interaction treatment did not induced a further depression in growth or more impairments in root cells of both sexes in comparison to salinity, indicating influence of combined stress was not equal simply to a superposition of the effects caused by single factors; (3) Cd and Na accumulation in root systems is highly heterogeneous and branch order-specific, with lower-order roots containing more Cd2+ but less Na+, and higher-order roots accumulating more Na+ but less Cd2+. Besides, it is noteworthy that females accumulated more Cd2+ in 1-2 order roots and more Na+ in 1-3 order roots than males under the interaction treatment. These results indicated that strategies in toxic ions accumulation in heterogeneous root systems of P. deltoides was highly branch order-specific, and may closely correlate with sex-specific root growth and physiological responses to the interaction of Cd and salinity.


Subject(s)
Cadmium/toxicity , Plant Roots/drug effects , Populus/drug effects , Sodium Chloride/toxicity , Soil Pollutants/toxicity , Biomass , Plant Roots/growth & development , Plant Roots/physiology , Populus/growth & development , Populus/physiology , Salinity , Sex , Soil
17.
Adv Colloid Interface Sci ; 275: 102052, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31753297

ABSTRACT

We review the experimental and theoretical results for the adsorption and structure of ionic surfactants at the air-liquid interface. The results show that ionic surfactants form thick adsorption layers at the interfacial region. We also review several adsorption models for ionic surfactants, which become increasingly complex as they capture the many features of adsorption layers. However, the adsorption layer structures determined by experiments and the structures predicted by models do not match because most models assume very thin adsorption layers. We show the discrepancies between measured and predicted surface properties and provide several explanations. We conclude that the mismatch in the adsorption layer structure provided by experiments and the structure provided by adsorption models is the main reason for the discrepancies in the surface excess and the surface potential.

18.
Molecules ; 24(19)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597244

ABSTRACT

Statistical evidence pointing to the very soft change in the ionic composition on the surface of the sugar cane bagasse is crucial to improve yields of sugars by hydrolytic saccharification. Removal of Li+ by pretreatments exposing -OH sites was the most important factor related to the increase of saccharification yields using enzyme cocktails. Steam Explosion and Microwave:H2SO4 pretreatments produced unrelated structural changes, but similar ionic distribution patterns. Both increased the saccharification yield 1.74-fold. NaOH produced structural changes related to Steam Explosion, but released surface-bounded Li+ obtaining 2.04-fold more reducing sugars than the control. In turn, the higher amounts in relative concentration and periodic structures of Li+ on the surface observed in the control or after the pretreatment with Ethanol:DMSO:Ammonium Oxalate, blocked -OH and O- available for ionic sputtering. These changes correlated to 1.90-fold decrease in saccharification yields. Li+ was an activator in solution, but its presence and distribution pattern on the substrate was prejudicial to the saccharification. Apparently, it acts as a phase-dependent modulator of enzyme activity. Therefore, no correlations were found between structural changes and the efficiency of the enzymatic cocktail used. However, there were correlations between the Li+ distribution patterns and the enzymatic activities that should to be shown.


Subject(s)
Cellulose/chemistry , Discriminant Analysis , Lithium/chemistry , Saccharum/chemistry , Chemical Phenomena , Hydrolysis , Ions/chemistry , Microscopy, Atomic Force , Surface Properties
19.
ACS Appl Mater Interfaces ; 10(35): 29814-29823, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30133244

ABSTRACT

Sublimable charged iridium(III) complexes are becoming an attractive family of new phosphors and making their way into vacuum-evaporated-deposited organic light-emitting diodes, while it remains challenging to achieve high device performance. Here, we demonstrate a substantial mitigation of exciton quenching not only by reducing the dopant concentration, but also by controlling the ion distribution in the emissive material layers. We, therefore, achieved green luminescence with high brightness, superior efficiencies, and low driving voltages. Following this strategy, we further developed another six sublimable charged iridium(III) complexes and attained blue-green, yellow, and red-emitting devices with record-high performance. This study represents an important advance in the construction of bright electroluminescence from ionic transition metal complexes and shows their great promise in various optoelectronic applications.

20.
Planta ; 248(2): 393-407, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29752535

ABSTRACT

MAIN CONCLUSION: Potassium (K), phosphorous (P), and carboxyfluorescein (CF) accumulate in functionally distinct tissues within the pine seedling root cortex. Seedlings of Pinus pinea translocate exogenous CF and endogenous K and P from the female gametophyte/cotyledons to the growing radicle. Following unloading in the root tip, these materials accumulate in characteristic spatial patterns. Transverse sections of root tips show high levels of P in a circular ring of several layers of inner cortical cells. K and CF are minimal in the high P tissue. In contrast, high levels of K and CF accumulate in outer cortical cells, and in the vascular cylinder. These patterns are a property of living tissue because they change after freeze-thaw treatment, which kills the cells and results in uniform distribution of K and P. K concentration can be reduced to undetectable levels by incubation of roots in 100 mM NaCl. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) of root segments both reliably determine K and P concentrations.


Subject(s)
Fluoresceins/pharmacokinetics , Phosphorus/metabolism , Pinus/metabolism , Plant Roots/metabolism , Potassium/metabolism , Biological Transport , Microscopy, Electron, Scanning , Pinus/drug effects , Plant Roots/ultrastructure , Seeds/metabolism , Spectrometry, X-Ray Emission , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL