Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters











Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20230313, 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39246077

ABSTRACT

Solid-state ionic conductors find application across various domains in materials science, particularly showcasing their significance in energy storage and conversion technologies. To effectively utilize these materials in high-performance electrochemical devices, a comprehensive understanding and precise control of charge carriers' distribution and ionic mobility at interfaces are paramount. A major challenge lies in unravelling the atomic-level processes governing ion dynamics within intricate solid and interfacial structures, such as grain boundaries and heterophases. From a theoretical viewpoint, in this Perspective article, my focus is to offer an overview of the current comprehension of key aspects related to solid-state ionic interfaces, with a particular emphasis on solid electrolytes for batteries, while providing a personal critical assessment of recent research advancements. I begin by introducing fundamental concepts for understanding solid-state conductors, such as the classical diffusion model and chemical potential. Subsequently, I delve into the modelling of space-charge regions, which are pivotal for understanding the physicochemical origins of charge redistribution at electrified interfaces. Finally, I discuss modern computational methods, such as density functional theory and machine-learned potentials, which offer invaluable tools for gaining insights into the atomic-scale behaviour of solid-state ionic interfaces, including both ionic mobility and interfacial reactivity aspects. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

2.
Small ; : e2406251, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39285817

ABSTRACT

Rational construction of high-performance ionic conductors is a critical challenge in the field of energy storage. In this study, a series of 1D anionic titanium-based covalent organic frameworks (COFs) containing abundant alkali metal ion migration sites, namely, COF-M-R (M = Li, Na, K; R = H, Me, Et), is constructed. The integration of negative TiO6 2- sites on 1D anionic COFs allows alkali metal cations to migrate directly through the channels. Meanwhile, the π-π stacking of 1D chain-to-chain allows the distribution of ion-migration sites in 2D planes. In view of this, multidimensional ionic transport in COFs is realized to achieve high ionic conductivity. COF-M-Rs exhibit an increased ionic conductivity as the counterions change from Li+ to Na+ to K+. Notably, COF-Na-Et has an impressive ionic conductivity as high as 0.81 × 10-3 S cm-1. The different decorated groups (H, Me, and Et) on the skeleton influence the dissociation of the cation from the polyanion. This study offers deep insights into the design of COF-based solid-state electrolytes to achieve high ionic conductivity by increasing the ionic transport dimensions.

3.
ChemSusChem ; : e202401304, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39265054

ABSTRACT

Despite being promoted as a superior Li-ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer-ceramic solid electrolytes for rechargeable all-solid-state lithium metal batteries. One of the main limitations is the detrimental presence of Li2CO3 on the surface of LLZO particles, restricting Li-ion transport at the polymer-ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that an surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt.% of boron-treated LLZO particles compared to the analogous CPE with non-treated LLZO. Ultimately, an improved cycling performance and stability in Li // LiFePO4 cells was also demonstrated for the modified material.

4.
ACS Appl Mater Interfaces ; 16(35): 46461-46472, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39163521

ABSTRACT

We develop a framework for controlling and investigating reversible ionic transfer between two solid metal oxides layers by examining field-driven changes in electrical properties of the thin film bilayer oxide system Pr0.1Ce0.9O2/La1.85Ce0.15CuO4 (PCO/LCCO). We show that we can reversibly redistribute oxygen ions by applied voltage in a highly controlled and reversible fashion near ambient temperatures over large oxygen ion activity limits, which, for the first time, is directly interpretable by defect chemical models. This allowed us to determine how defect concentrations in each layer systematically varied with voltage and the subsequent impact on each film's conductance. These results showcase the relevance and applicability of defect chemical models, traditionally considered only at elevated temperatures, to the development of bilayer devices of importance to neuromorphic memory applications. This allows for a more systematic approach for studying and understanding the solid-solid exchange process in electrochemically controlled microelectronic devices. Moreover, our work sets the foundation for the development of large-area field-driven defect-controlled bilayer switching devices with potential application to a broad array of functionally modulated devices.

5.
Carbohydr Polym ; 340: 122258, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857999

ABSTRACT

Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.

6.
Polymers (Basel) ; 16(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257058

ABSTRACT

With the rapid development of modern society, our demand for energy is increasing. And the extensive use of fossil energy has triggered a series of problems such as an energy crisis and environmental pollution. A moisture-enabled electric generator (MEG) is a new type of energy conversion method, which can directly convert the ubiquitous moisture in the air into electrical energy equipment. It has attracted great interest for its renewable and environmentally friendly qualities. At present, most MEGs still have low power density, strong dependence on high humidity, and high cost. Herein, we report the development of a high-efficiency MEG based on a lignocellulosic fiber frame with high-power-density, all-weather, and low-cost characteristics using a simple strategy that optimizes the charge transport channel and ion concentration difference. The MEG devices we manufactured can generate the open-circuit voltage of 0.73 V and the short-circuit current of 360 µA, and the voltage can still reach 0.6 V at less than 30% humidity. It is possible to drive commercial electronic devices such as light-emitting diodes, electronic displays, and electronic calculators by simply connecting several electric generators in series. Biomass-based moisture-enabled electric generation has a low cost, is easy to integrate on a large scale, and is green and pollution-free, providing clean energy for low-humidity or high-electricity-cost areas.

7.
Adv Mater ; 36(4): e2307651, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010278

ABSTRACT

Although various excellent electrocatalysts/adsorbents have made notable progress as sulfur cathode hosts on the lithium-sulfur (Li-S) coin-cell level, high energy density (WG ) of the practical Li-S pouch cells is still limited by inefficient Li-ion transport in the thick sulfur cathode under low electrolyte/sulfur (E/S) and negative/positive (N/P) ratios, which aggravates the shuttle effect and sluggish redox kinetics. Here a new ternary fluoride MgAlF5 ·2H2 O with ultrafast ion conduction-strong polysulfides capture integration is developed. MgAlF5 ·2H2 O has an inverse Weberite-type crystal framework, in which the corner-sharing [AlF6 ]-[MgF4 (H2 O)2 ] octahedra units extend to form two-dimensional Li-ion transport channels along the [100] and [010] directions, respectively. Applied as the cathode sulfur host, the MgAlF5 ·2H2 O lithiated by LiTFSI (lithium salt in Li-S electrolyte) acts as a fast ionic conductor to ensure efficient Li-ion transport to accelerate the redox kinetics under high S loadings and low E/S and N/P. Meanwhile, the strong polar MgAlF5 ·2H2 O captures polysulfides by chemisorption to suppress the shuttle effect. Therefore, a 1.97 A h-level Li-S pouch cell achieves a high WG of 386 Wh kg-1 . This work develops a new-type ionic conductor, and provides unique insights and new hosts for designing practical Li-S pouch cells.

8.
ChemSusChem ; 17(3): e202301268, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37845180

ABSTRACT

Solid-state batteries (SSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to the high safety, high energy density and wide operating temperature range of solid-state electrolytes (SSEs) they use. Unfortunately, the practical application of SSEs has rarely been successful, which is largely attributed to the low chemical stability and ionic conductivity, ineluctable solid-solid interface issues including limited ion transport channels, high energy barriers, and poor interface contact. A comprehensive understanding of ion transport mechanisms of various SSEs, interactions between fillers and polymer matrixes and the role of the interface in SSBs are indispensable for rational design and performance optimization of novel electrolytes. The categories, research advances and ion transport mechanism of inorganic glass/ceramic electrolytes, polymer-based electrolytes and corresponding composite electrolytes are detailly summarized and discussed. Moreover, interface contact and compatibility between electrolyte and cathode/anode are also briefly discussed. Furthermore, the electrochemical characterization methods of SSEs used in different types of SSBs are also introduced. On this basis, the principles and prospects of novel SSEs and interface design are curtly proposed according to the development requirements of SSBs. Moreover, the advanced characterizations for real-time monitoring of interface changes are also brought forward to promote the development of SSBs.

9.
Nanomicro Lett ; 16(1): 43, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047979

ABSTRACT

HIGHLIGHTS: Influence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier. The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling. Progress in the fast charging of high-capacity silicon monoxide (SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion. The construction of an interface conductive network effectively addresses the aforementioned problems; however, the impact of its quality on lithium-ion transfer and structure durability is yet to be explored. Herein, the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. 2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier. Furthermore, atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network, which is critical to the linear reduction of electrode residual stress. This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.

10.
Nano Lett ; 23(24): 11719-11726, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38078825

ABSTRACT

Ionic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers. Our analysis of the different types of energy involved in ion translocations indicates that electrostatics is the dominant factor controlling ion transfer across these sub-nm pores. A physical model based on the thermionic emission formalism to account for the free energy barriers to ion flow reproduces the I-V characteristics.

11.
ACS Nano ; 17(23): 23671-23678, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37975813

ABSTRACT

The dynamic crystal lattice of halide perovskites facilitates the coupled transport of ions and electrons, offering innovative concepts in semiconductor iontronic devices that surpass solar cell applications. However, a comprehensive understanding of the intricacies of coupled ionic and electronic transport at the microscale remains ambiguous, owing to the inhomogeneity in ploy-crystalline perovskite thin films. In this work, we employed one-dimensional (1D) single-crystalline CsPbBr3 nanowires (NWs) to investigate the electric field induced ionic transport. Upon poling by an external bias, the previously uniform NW exhibits highly anisotropic ionic transport, which is identified as the origin of the giant switchable photovoltaic effect by spatially resolved scanning photocurrent microscopy. The subsequent ultrafast scanning photoluminescence (PL) microscopy measurements demonstrate significant localization of photocarriers near one terminal of the device, which is attributed to the accumulation of halogen vacancies. In addition, thanks to the enhancement of the local electric field, the poled device shows a 10-fold increase of photoresponse speed. Our findings favor the scale-down of perovskite devices to the submicrometer scale, extending their applications in self-powered iontronic and optoelectronic devices.

12.
Angew Chem Int Ed Engl ; 62(35): e202306325, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37401361

ABSTRACT

Potassium metal batteries (KMBs) are ideal choices for high energy density storage system owing to the low electrochemical potential and low cost of K. However, the practical KMB applications suffer from intrinsically active K anode, which would bring serious safety concerns due to easier generation of dendrites. Herein, to explore a facile approach to tackle this issue, we propose to regulate K plating/stripping via interfacial chemistry engineering of commercial polyolefin-based separator using multiple functional units integrated in tailored metal organic framework. As a case study, the functional units of MIL-101(Cr) offer high elastic modulus, facilitate the dissociation of potassium salt, improve the K+ transfer number and homogenize the K+ flux at the electrode/electrolyte interface. Benefiting from these favorable features, uniform and stable K plating/stripping is realized with the regulated separator. Full battery assembled with the regulated separator showed ∼19.9 % higher discharge capacity than that with glass fiber separator at 20 mA g-1 and much better cycling stability at high rates. The generality of our approach is validated with KMBs using different cathodes and electrolytes. We envision that the strategy to suppress dendrite formation by commercial separator surface engineering using tailor-designed functional units can be extended to other metal/metal ion batteries.

13.
Small ; 19(48): e2304200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37525334

ABSTRACT

Molybdenum selenium (MoSe2 ) has tremendous potential in potassium-ion batteries (PIBs) due to its large interlayer distance, favorable bandgap, and high theoretical specific capacity. However, the poor conductivity and large K+ insertion/extraction in MoSe2 inevitably leads to sluggish reaction kinetics and poor structural stability. Herein, Coinduced engineering is employed to illuminate high-conductivity electron pathway and mobile ion diffusion of MoSe2 nanosheets anchored on reduced graphene oxide substrate (Co-MoSe2 /rGO). Benefiting from the activated electronic conductivity and ion diffusion kinetics, and an expanded interlayer spacing resulting from Co doping, combined with the interface coupling with highly conductive reduced graphene oxide (rGO) substrate through Mo-C bonding, the Co-MoSe2 /rGO anode demonstrates remarkable reversible capacity, superior rate capability, and stable long-term cyclability for potassium storage, as well as superior energy density and high power density for potassium-ion capacitors. Systematic performance measurement, dynamic analysis, in-situ/ex-situ measurements, and density functional theory (DFT) calculations elucidate the performance-enhancing mechanism of Co-MoSe2 /rGO in view of the electronic and ionic transport kinetics. This work offers deep atomic insights into the fundamental factors of electrodes for potassium-ion batteries/capacitors with superior electrochemical performance.

14.
Adv Mater ; 35(40): e2303730, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37358065

ABSTRACT

The softness of sulfur sublattice and rotational PS4 tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa2 PO8 and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li-O polyhedral distortion and Li-ion correlation, which are controlled by doping strategies. The liquid-like conduction enables a high ionic conductivity (1.2 mS cm-1 at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm-2 for Li/LiTa2 PO8 /Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.

15.
Proc Natl Acad Sci U S A ; 120(25): e2221304120, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37307490

ABSTRACT

Liquid and ionic transport through nanometric structures is central to many phenomena, ranging from cellular exchanges to water resource management or green energy conversion. While pushing down toward molecular scales progressively unveils novel transport behaviors, reaching ultimate confinement in controlled systems remains challenging and has often involved 2D Van der Waals materials. Here, we propose an alternative route which circumvents demanding nanofabrication steps, partially releases material constraints, and offers continuously tunable molecular confinement. This soft-matter-inspired approach is based on the spontaneous formation of a molecularly thin liquid film onto fully wettable substrates in contact with the vapor phase of the liquid. Using silicon dioxide substrates, water films ranging from angstrom to nanometric thicknesses are formed in this manner, and ionic transport within the film can then be measured. Performing conductance measurements as a function of confinement in these ultimate regimes reveals a one-molecule thick layer of fully hindered transport nearby the silica, above which continuum, bulk-like approaches account for experimental results. Overall, this work paves the way for future investigations of molecular scale nanofluidics and provides insights into ionic transport nearby high surface energy materials such as natural rocks and clays, building concretes, or nanoscale silica membranes used for separation and filtering.

16.
Nanomaterials (Basel) ; 13(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37368317

ABSTRACT

Improving the ionic conductivity and slow oxygen reduction electro-catalytic activity of reactions occurring at low operating temperature would do wonders for the widespread use of low-operating temperature ceramic fuel cells (LT-CFCs; 450-550 °C). In this work, we present a novel semiconductor heterostructure composite made of a spinel-like structure of Co0.6Mn0.4Fe0.4Al1.6O4 (CMFA) and ZnO, which functions as an effective electrolyte membrane for solid oxide fuel cells. For enhanced fuel cell performance at sub-optimal temperatures, the CMFA-ZnO heterostructure composite was developed. We have shown that a button-sized SOFC fueled by H2 and ambient air can provide 835 mW/cm2 of power and 2216 mA/cm2 of current at 550 °C, possibly functioning down to 450 °C. In addition, the oxygen vacancy formation energy and activation energy of the CMFA-ZnO heterostructure composite is lower than those of the individual CMFA and ZnO, facilitating ion transit. The improved ionic conduction of the CMFA-ZnO heterostructure composite was investigated using several transmission and spectroscopic measures, including X-ray diffraction, photoelectron, and UV-visible spectroscopy, and density functional theory (DFT) calculations. These findings suggest that the heterostructure approach is practical for LT-SOFCs.

17.
J Colloid Interface Sci ; 629(Pt A): 649-659, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36088707

ABSTRACT

Metal oxides are promising electrode candidates for supercapacitor due to their high theoretical capacitance, good reversibility, and low cost. However, they show inferior specific capacitance and power density because of their sluggish ion diffusion kinetics and intrinsically poor electrical conductivity within the solid phase. Herein, heterostructured ZnCo2O4/ZnO nanobelts are successfully prepared by using self-assembled Zn/Co-based nanosized coordination polymers as the precursors. The resulted nanobelts are composed of uniformly distributed ZnCo2O4 and ZnO nanocrystals, which spontaneously develop built-in electric fields in the nanobelts, and thus improve the conductivity and accelerate charge transport. The as-obtained ZnCo2O4/ZnO nanobelts display a high specific capacitance of 481.0 F g-1 at 1 A/g. The asymmetric supercapacitor, with a ZnCo2O4/ZnO positive electrode and an activated carbon negative electrode, deliver an energy of 23.77 Wh kg-1 at the power density of 399.98 W kg-1 and excellent prolonged cycle life. The excellent electrochemical performance benefits from both the special structure and built-in field at the heterostructure interface, which could significantly reduce the ion diffusion resistance and thus promote charge transport. This strategy may blaze a trail for engineering efficient electrode based on earth-abundant materials.

18.
ACS Appl Mater Interfaces ; 15(1): 2409-2418, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36562122

ABSTRACT

Mass transport through nanopores occurs in various natural systems, including the human body. For example, ion transport across nerve cell membranes plays a significant role in neural signal transmission, which can be significantly affected by the electrolyte and temperature conditions. To better understand and control the underlying nanoscopic transport, it is necessary to develop multiphysical transport models as well as validate them using enhanced experimental methods for facile nanopore fabrication and precise nanoscale transport characterization. Here, we report a nanopore-integrated microfluidic platform to characterize ion transport in the presence of electrolyte and temperature gradients; we employ our previous self-assembled particle membrane (SAPM)-integrated microfluidic platform to produce various nanopores with different pore sizes. Subsequently, we quantify pore-size-dependent ionic transport by measuring the short circuit current (SCC) and open circuit voltage (OCV) across various nanopores by manipulating the electrolyte and temperature gradients. We establish three simple theoretical models that heavily depend on pore size, electrolyte concentration, and temperature and subsequently validate them with the experimental results. Finally, we anticipate that the results of this study would help clarify ion transport phenomena at low-temperature conditions, not only providing a fundamental understanding but also enabling practical applications of cryo-anesthesia in the near future.

19.
Polymers (Basel) ; 14(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36432938

ABSTRACT

Despite the enormous environmental damage caused by plastic waste, it makes up over one-third of globally produced plastics. Polyethylene (PE) wastes have low recycling but high production rates. Towards the construction of ionic solar cells from PE, the present work describes the loading of a bioactive photoacid phycocyanobilin (PCB) dye from the pigment of Spirulina blue-green algae (as a natural resource) on low-density polyethylene (LDPE) plastic film. Dyeing was confirmed by X-ray photoelectron spectroscopy (XPS). Upon excitation of the Soret-band (400 nm), the photoluminescence (PL) spectra of PCB in neat solvents revealed two prominent emission peaks at 450-550 and 600-700 nm. The first band assigned to bilirubin-like (PCBBR) species predominated the spectral profile in the highly rigid solvent glycerol and upon loading 0.45 % (w/w) of the dye on plastic. The photoluminescence excitation (PLE) spectra of PCB for the second region (Q-band) at 672 nm in the same solvents confirmed the ground state heterogenicity previously associated with the presence of PCBA (neutral), PCBB (cationic), and PCBC (anionic) conformers. Time-resolved photoluminescence (TRPL) measurements induced via excitation of all PCB species at 510 nm in methanol revealed three-lifetime components with τ1 = ~0.1 ns and τ2 = ~2 ns associated with PCBBR species and τ3 = ~5 ns pertinent to the long-living photoproduct X*. Decay-associated spectra (DAS) analysis of the photoluminescence transient spectra of the final dyed films in the solid-state confirmed the improved generation of the long-living photoproduct as manifested in a significant increase in the PL intensity (~100-fold) and lifetime value (~90 ns) in the Q-region upon loading 6.92 % (w/w) of the dye on plastic. The photoproduct species were presumably assigned to the deprotonated PCB species, suggesting improved ionic mobility. The potential implementation of the PCB-sensitized PE solid wastes for the fabrication of ionic solar cells is discussed.

20.
Small Methods ; 6(11): e2200995, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36250994

ABSTRACT

It is a major challenge to achieve a high-performance anode for sodium-ion batteries (SIBs) with high specific capacity, high rate capability, and cycling stability. Bismuth sulfide, which features a high theoretical specific capacity, tailorable morphology, and low cost, has been considered as a promising anode for SIBs. Nevertheless, due to a lack of direct atomistic observation, the detailed understanding of fundamental intercalation behavior and Bi2 S3 's (de)sodiation mechanisms remains unclear. Here, by employing in situ high-resolution transmission electron microscopy, consecutive electron diffraction coupled with theoretical calculations, it is not only for the first time identified that Bi2 S3 exhibits specific ionic transport pathways preferred to diffuse along the (110) direction instead of the (200) plane, but also tracks their real-time phase transformations (de)sodiation involving multi-step crystallographic tuning. The finite-element analysis further disclosed multi-reaction induced deformation and the relevant stress evolution originating from the combined effect of the mechanical and electrochemical interaction. These discoveries not only deepen the understanding of fundamental science about the microscopic reaction mechanism of metal chalcogenide anodes but also provide important implications for performance optimization.

SELECTION OF CITATIONS
SEARCH DETAIL