Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Front Genet ; 15: 1406230, 2024.
Article in English | MEDLINE | ID: mdl-39170693

ABSTRACT

Background: Iron status has been implicated in gastrointestinal diseases and gut microbiota, however, confounding factors may influence these associations. Objective: We performed Mendelian randomization (MR) to investigate the associations of iron status, including blood iron content, visceral iron content, and iron deficiency anemia with the incidence of 24 gastrointestinal diseases and alterations in gut microbiota. Methods: Independent genetic instruments linked with iron status were selected using a genome-wide threshold of p = 5 × 10-6 from corresponding genome-wide association studies. Genetic associations related to gastrointestinal diseases and gut microbiota were derived from the UK Biobank, the FinnGen study, and other consortia. Results: Genetically predicted higher levels of iron and ferritin were associated with a higher risk of liver cancer. Higher levels of transferrin saturation were linked to a decreased risk of celiac disease, but a higher risk of non-alcoholic fatty liver disease (NAFLD) and liver cancer. Higher spleen iron content was linked to a lower risk of pancreatic cancer. Additionally, higher levels of liver iron content were linked to a higher risk of NAFLD and liver cancer. However, certain associations lost their statistical significance upon accounting for the genetically predicted usage of cigarettes and alcohol. Then, higher levels of iron and ferritin were associated with 11 gut microbiota abundance, respectively. In a secondary analysis, higher iron levels were associated with lower diverticular disease risk and higher ferritin levels with increased liver cancer risk. Higher levels of transferrin saturation were proven to increase the risk of NAFLD, alcoholic liver disease, and liver cancer, but decrease the risk of esophageal cancer. MR analysis showed no mediating relationship among iron status, gut microbiota, and gastrointestinal diseases. Conclusion: This study provides evidence suggesting potential causal associations of iron status with gastrointestinal diseases and gut microbiota, especially liver disease.

2.
Int J Sport Nutr Exerc Metab ; : 1-9, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168457

ABSTRACT

OBJECTIVE: Micronutrient status, specifically vitamin D and iron, represent modifiable factors for optimizing military readiness. The primary purpose of this investigation was to determine associations between micronutrient deficiency (i.e., iron status and 25-hydroxy-vitamin D [25(OH)D]) and operationally relevant outcomes (i.e., skeletal health, musculoskeletal injury) at baseline and post-10 weeks of arduous military training. METHODS: A total of 227 (177 men, 50 women) Marine Officer Candidates School (OCS) candidates who completed OCS training with complete data sets were included in this analysis. Vitamin D and iron status indicators were collected at two timepoints, pre (baseline) and post OCS. Musculoskeletal outcomes at the mid- and proximal tibial diaphysis were assessed via peripheral quantitative computed tomography. RESULTS: Micronutrient status declined following OCS training in men and women and was associated with musculoskeletal outcomes including greater bone strength (strength strain index) at the mid-diaphysis site in those with optimal status (M = 38.26 mm3, SE = 15.59) versus those without (M = -8.03 mm3, SE = 17.27). In women (p = .037), endosteal circumference was greater in the deficient group (M = 53.26 mm, SE = 1.19) compared with the optimal group (M = 49.47 mm, SE = 1.31) at the proximal diaphysis. In men, greater baseline hepcidin concentrations were associated with an increased likelihood of suffering musculoskeletal injury during training. CONCLUSIONS: Vitamin D and iron status declined over the course of training, suggesting impaired micronutrient status. Differences in musculoskeletal outcomes by micronutrient group suggests optimal vitamin D and ferritin concentrations may exert beneficial effects on bone fatigability and fracture reduction during military training.

3.
Front Physiol ; 15: 1383141, 2024.
Article in English | MEDLINE | ID: mdl-39077758

ABSTRACT

Introduction: Artistic gymnastics is one of the most demanding sports disciplines, with the athletes demonstrating extremely high levels of explosive power and strength. Currently, knowledge of the effect of gymnastic training adaptation on exercise-induced inflammatory response is limited. The study aimed to evaluate inflammatory response following lower- and upper-body high-intensity exercise in relation to the iron status in gymnasts and non-athletes. Methods: Fourteen elite male artistic gymnasts (EAG, 20.6 ± 3.3 years old) and 14 physically active men (PAM, 19.9 ± 1.0 years old) participated in the study. Venous blood samples were taken before and 5 min and 60 min after two variants of Wingate anaerobic test (WAnT), upper-body and lower-body WAnT. Basal iron metabolism (serum iron and ferritin) and acute responses of selected inflammatory response markers [interleukin (IL) 6, IL-10, and tumour necrosis factor α] were analysed. Results: EAG performed significantly better during upper-body WAnT than PAM regarding relative mean and peak power. The increase in IL-6 levels after upper-body WAnT was higher in EAG than in PAM; the opposite was observed after lower-body WAnT. IL-10 levels were higher in EAG than in PAM, and tumour necrosis factor α levels were higher in PAM than those in EAG only after lower-body WAnT. The changes in IL-10 correlated with baseline serum iron and ferritin in PAM. Discussion: Overall, gymnastic training is associated with the attenuation of iron-dependent post-exercise anti-inflammatory cytokine secretion.

4.
Environ Pollut ; 359: 124576, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032552

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) constitute a group of synthetic chemicals extensively utilized across various commonplace products. PFAS are known to have various toxic effects on human health. The relationship between PFAS exposure and erythrocytes has been a subject of interest in epidemiological research, but so far, only limited cross-sectional studies have investigated. Additionally, the role of erythrocyte related nutrition indicators on PFAS-induced changes in erythrograms has not been explored. To fill these knowledge gaps, we launched a longitudinal study over a decade, tracking 502 adolescents and young adults aged 12 to 30 from the YOung TAiwanese Cohort (YOTA). Our analysis encompassed 11 types of plasma PFAS, as well as erythrograms and serum levels of ferritin, transferrin saturation, vitamin B12, and folate. Our examination unveiled positive associations between specific average levels of PFAS compounds, including linear perfluorooctanoic acid (PFOA), branched perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), and transferrin saturation. Furthermore, linear PFOA and both linear and branched PFOS were negatively correlated with vitamin B12 levels. Specifically, we observed that the average linear PFOA demonstrated positive correlations with mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH), while average PFNA also exhibited positive associations with hemoglobin (Hb) and hematocrit (Hct) in a multiple linear regression model. Subsequent analysis revealed noteworthy interactions between vitamin B12 and PFNA, as well as folate and PFNA, in the context of their impact on Hb, Hct, and PFNA relationships. Additionally, an interaction with transferrin saturation was identified in the correlation between Hct and PFNA. These findings suggest a plausible link between PFAS exposure and erythrograms among young populations, underscoring the potential involvement of iron status, vitamin B12, and folate in this association. Further studies are imperative to elucidate the precise effects of PFAS on erythrocyte in human subjects.

5.
J Anim Sci Biotechnol ; 15(1): 93, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970136

ABSTRACT

BACKGROUND: Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia, which suggested that the current level and form of iron supplementation in boar diets may be inappropriate. Therefore, 56 healthy Topeka E line boars aged 15-21 months were randomly divided into 5 groups: basal diet supplemented with 96 mg/kg ferrous sulfate (FeSO4) and 54 mg/kg glycine chelated iron (Gly-Fe, control); 80 mg/kg or 115 mg/kg Gly-Fe; 80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron (MHA-Fe, from Calimet-Fe) for 16 weeks. The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated. RESULTS: 1) Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group (P > 0.05). 2) Serum interleukin-6 (IL-6) and sperm malondialdehyde (MDA) levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group (P < 0.05), and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group (P < 0.05). 3) Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin (P < 0.01), ferritin (P < 0.05), and transferrin receptor (P < 0.01) concentrations, and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group. 4) Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial. However, the effect of Gly-Fe on improving semen quality in boars was not evident. 5) Serum IL-6 level was positively correlated with hepcidin concentration (P < 0.05), which in turn was significantly positively correlated with abnormal sperm rate (P < 0.05). Furthermore, significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters. CONCLUSIONS: Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency, but rather reduced serum inflammatory levels and hepcidin concentration, alleviated oxidative stress, increased body iron utilization, and improved semen quality in adult boars.

6.
Diabetol Metab Syndr ; 16(1): 174, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054539

ABSTRACT

BACKGROUND: Diabetic neuropathy (DN), a frequent complication in individuals with diabetes mellitus (DM), is hypothesized to have a correlation with systemic iron status, though the nature of this relationship remains unclear. This study employs two-sample Mendelian randomization (MR) analysis to explore this potential genetic association. METHODS: We used genetic instruments significant associated with iron status including serum iron, ferritin, transferrin, and transferrin saturation, derived from an extensive Genome-Wide Association Study (GWAS) undertaken by the Genetics of Iron Status Consortium, involving a cohort of 48,972 European ancestry individuals. Summary statistics for DN were collected from a public GWAS, including 1,415 patients and 162,201 controls of European descent. Our MR analysis used the inverse-variance-weighted (IVW) method, supplemented by MR-Egger, weighted-median (WM) methods, Cochran's Q test, MR-Egger intercept analysis, MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) method, and leave-one-out analysis to ensure robustness and consistency of the findings. RESULTS: No genetic causal relationship was found between iron status markers and DN (all IVW p value > 0.05). Interestingly, a causative effect of DN on ferritin (IVW: OR = 0.943, 95% CI = 0.892-0.996, p = 0.035) and transferrin saturation (IVW: OR = 0.941, 95% CI = 0.888-0.998, p = 0.044) emerged. Sensitivity analyses confirmed the absence of significant heterogeneity and horizontal pleiotropy. CONCLUSION: While systemic iron status was not found to be causally related to DN, our findings suggest that DN may increase the risk of iron deficiency. These results provide further evidence supporting iron supplementation in patients with DN.

7.
Children (Basel) ; 11(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929238

ABSTRACT

Poor iron status is detrimental to physical and cognitive performance in adolescents. Due to the limited studies investigating the association between iron status and physical fitness components in adolescents from low- and middle-income countries, we aimed to determine the association of iron status with selected physical fitness components in South African adolescents. A cross-sectional study design, including 178 adolescents (102 girls and 76 boys) from the Physical Activity and Health Longitudinal Study (PAHLS), was followed. Height and weight were measured to calculate the body mass index (BMI). Subsequently, WHO BMI-for-age-specific categorised body fatness. Cardiorespiratory fitness was determined with a 20-m shuttle run test (V˙O2max), and lower-body explosive power by the standing broad jump (SBJ). Fasting haemoglobin (Hb) and ferritin were analysed from blood samples. Correlation analyses determine the association between iron status, explosive power and cardiorespiratory fitness. Of the 178 participants, 18.5% (n = 33) had low Hb, and 14% (n = 25) iron deficiency without anaemia. Significant positive correlations were found between the selected physical fitness components, ferritin, and Hb. In boys, a positive association was found between Hb and SBJ (r = 0.30, p = 0.006), whilst in girls, positive associations were found between ferritin (r = 0.25, p = 0.04) and SBJ, and Hb with both SBJ (r = 0.21, p = 0.03) and V˙O2max (r = 0.32, p = 0.001). Hb concentration remained associated with V˙O2max and SBJ in girls after adjustment for age, whilst in boys, Hb concentration was associated with SBJ. Higher iron status in South African adolescents is associated with higher lower-limb explosive power and cardiorespiratory fitness. We suggest monitoring of haematological parameters, and interventions to improve the iron status of South African adolescents.

8.
BMC Vet Res ; 20(1): 210, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762716

ABSTRACT

BACKGROUND: Myxomatous mitral valve disease (MMVD) is the most common acquired cardiovascular disease in small breed dogs. In contrast to human patients with heart failure (HF), iron deficiency (ID) prevalence in dogs with MMVD is weakly known. The study aimed to assess the usability of ID markers in serum and reticulocyte parameters from whole blood of dogs with MMVD to evaluate early ID symptoms. RESULTS: Sixty-eight dogs (43 male and 25 female) were included in the study. MMVD dogs were assigned according to the 2019 ACVIM guidelines for groups B1 (n = 9), B2 (n = 10), C (n = 27) and D (n = 10). Groups were also combined into B1 and B2 as non-symptomatic HF and C with D as symptomatic HF. Healthy controls were 12 dogs. Serum iron concentration below the reference range in dogs with MMVD was 12.5%. Other ID indices, such as %SAT, UIBC, and TIBC were similar in the MMVD groups and healthy controls (p > 0.05 for all parameters). Statistical comparison between control group and 4 groups of different stages of MMVD showed that significant differences occur only in serum transferrin. The assessment of ferritin and soluble transferrin receptors using Western Blotting did not show differences between control (n = 7) and MMVD (n = 33) dogs. Study has shown positive correlation between ID parameters and echocardiographic indices such as LA/Ao and LVIDdN, and some biochemical parameters. A significant increase in reticulocytes percentage, assessed manually, was observed in the HF group of animals (p = 0.027) compared to the control group. CONCLUSIONS: Studies have shown that ID parameters in serum are not significantly different in dogs with MMVD compared to healthy dogs. However, there is a clear correlation between atrial size and normalised left ventricular size to body size and some biochemical parameters, including ID parameters and therefore the severity of MMVD.


Subject(s)
Dog Diseases , Iron , Dogs , Animals , Dog Diseases/blood , Female , Male , Iron/blood , Biomarkers/blood , Ferritins/blood , Mitral Valve Insufficiency/veterinary , Mitral Valve Insufficiency/blood , Iron Deficiencies/blood , Heart Valve Diseases/veterinary , Heart Valve Diseases/blood , Mitral Valve , Anemia, Iron-Deficiency/veterinary , Anemia, Iron-Deficiency/blood , Transferrin/analysis , Transferrin/metabolism , Reticulocytes
9.
Pulm Circ ; 14(2): e12370, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38774814

ABSTRACT

To explore the genetic causal association between pulmonary artery hypertension (PAH) and iron status through Mendelian randomization (MR), we conducted MR analysis using publicly available genome-wide association study (GWAS) summary data. Five indicators related to iron status (serum iron, ferritin, total iron binding capacity (TIBC), soluble transferrin receptor (sTfR), and transferrin saturation) served as exposures, while PAH was the outcome. The genetic causal association between these iron status indicators and PAH was assessed using the inverse variance weighted (IVW) method. Cochran's Q statistic was employed to evaluate heterogeneity. We assessed pleiotropy using MR-Egger regression and MR-Presso test. Additionally, we validated our results using the Weighted median, Simple mode, and Weighted mode methods. Based on the IVW method, we found no causal association between iron status (serum iron, ferritin, TIBC, sTfR, and transferrin saturation) and PAH (p ß > 0.05). The Weighted median, Simple mode, and Weighted mode methods showed no potential genetic causal association (p ß > 0.05 in the three analyses). Additionally, no heterogeneity or horizontal pleiotropy was detected in any of the analyses. Our results show that there are no genetic causal association between iron status and PAH.

10.
Front Psychiatry ; 15: 1310259, 2024.
Article in English | MEDLINE | ID: mdl-38779543

ABSTRACT

Background: Epidemiological evidence indicates a high correlation and comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Restless Legs Syndrome (RLS). Objective: We aimed to investigate the causal relationship and shared genetic architecture between ADHD and RLS, as well as explore potential causal associations between both disorders and peripheral iron status. Methods: We performed two-sample Mendelian randomization (MR) analyses using summary statistics from genome-wide meta-analyses of ADHD, RLS, and peripheral iron status (serum iron, ferritin, transferrin saturation, and total iron binding capacity). Additionally, we employed linkage disequilibrium score regression (LDSC) to assess genetic correlations between ADHD and RLS using genetic data. Results: Our MR results supports a causal effect from ADHD (as exposure) to RLS (as outcome) (inverse variance weighted OR = 1.20, 95% CI: 1.08-1.34, p = 0.001). Conversely, we found no a causal association from RLS to ADHD (inverse variance weighted OR = 1.04, 95% CI: 0.99-1.09, p = 0.11). LDSC analysis did not detect a significant genetic correlation between RLS and ADHD (Rg = 0.3, SE = 0.16, p = 0.068). Furthermore, no evidence supported a causal relationship between peripheral iron deficiency and the RLS or ADHD onset. However, RLS may have been associated with a genetic predisposition to reduced serum ferritin levels (OR = 1.20, 95% CI: 1.00-1.04, p = 0.047). Conclusion: This study suggests that ADHD is an independent risk factor for RLS, while RLS may confer a genetic predisposition to reduced serum ferritin levels. Limitations: The GWAS summary data utilized originated from populations of European ancestry, limiting the generalizability of conclusions to other populations. Clinical implications: The potential co-occurrence of RLS in individuals with ADHD should be considered during diagnosis and treatment. Moreover, iron supplementation may be beneficial for alleviating RLS symptoms.

11.
Nutrients ; 16(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794732

ABSTRACT

Iron deficiency in infants can impact development, and there are concerns that the use of baby food pouches and baby-led weaning may impair iron status. First Foods New Zealand (FFNZ) was an observational study of 625 New Zealand infants aged 6.9 to 10.1 months. Feeding methods were defined based on parental reports of infant feeding at "around 6 months of age": "frequent" baby food pouch use (five+ times per week) and "full baby-led weaning" (the infant primarily self-feeds). Iron status was assessed using a venepuncture blood sample. The estimated prevalence of suboptimal iron status was 23%, but neither feeding method significantly predicted body iron concentrations nor the odds of iron sufficiency after controlling for potential confounding factors including infant formula intake. Adjusted ORs for iron sufficiency were 1.50 (95% CI: 0.67-3.39) for frequent pouch users compared to non-pouch users and 0.91 (95% CI: 0.45-1.87) for baby-led weaning compared to traditional spoon-feeding. Contrary to concerns, there was no evidence that baby food pouch use or baby-led weaning, as currently practiced in New Zealand, were associated with poorer iron status in this age group. However, notable levels of suboptimal iron status, regardless of the feeding method, emphasise the ongoing need for paying attention to infant iron nutrition.


Subject(s)
Iron , Nutritional Status , Weaning , Humans , New Zealand/epidemiology , Infant , Female , Male , Iron/blood , Infant Nutritional Physiological Phenomena , Infant Food/analysis , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/blood , Iron Deficiencies
12.
Age Ageing ; 53(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38770543

ABSTRACT

CONTEXT: Chronic kidney disease (CKD) leads to alterations in fibroblast growth factor 23 (FGF23) and the renal-bone axis. This may be partly driven by altered inflammation and iron status. Vitamin D supplementation may reduce inflammation. OBJECTIVE AND METHODS: Older adults with early CKD (estimated glomerular filtration rate (eGFR) 30-60 ml/min/1.73 m2; CKDG3a/b; n = 35) or normal renal function (eGFR >90 ml/min/1.73 m2; CKDG1; n = 35) received 12,000, 24,000 or 48,000 IU D3/month for 1 year. Markers of the renal-bone axis, inflammation and iron status were investigated pre- and post-supplementation. Predictors of c-terminal and intact FGF23 (cFGF23; iFGF23) were identified by univariate and multivariate regression. RESULTS: Pre-supplementation, comparing CKDG3a/b to CKDG1, plasma cFGF23, iFGF23, PTH, sclerostin and TNFα were significantly higher and Klotho, 1,25-dihydroxyvitamin D and iron were lower. Post-supplementation, only cFGF23, 25(OH)D and IL6 differed between groups. The response to supplementation differed between eGFR groups. Only in the CKDG1 group, phosphate decreased, cFGF23, iFGF23 and procollagen type I N-propeptide increased. In the CKDG3a/b group, TNFα significantly decreased, and iron increased. Plasma 25(OH)D and IL10 increased, and carboxy-terminal collagen crosslinks decreased in both groups. In univariate models cFGF23 and iFGF23 were predicted by eGFR and regulators of calcium and phosphate metabolism at both time points; IL6 predicted cFGF23 (post-supplementation) and iFGF23 (pre-supplementation) in univariate models. Hepcidin predicted post-supplementation cFGF23 in multivariate models with eGFR. CONCLUSION: Alterations in regulators of the renal-bone axis, inflammation and iron status were found in early CKD. The response to vitamin D3 supplementation differed between eGFR groups. Plasma IL6 predicted both cFGF23 and iFGF23 and hepcidin predicted cFGF23.


Subject(s)
Biomarkers , Dietary Supplements , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Glomerular Filtration Rate , Iron , Kidney , Renal Insufficiency, Chronic , Vitamin D , Humans , Aged , Male , Female , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/drug therapy , Glomerular Filtration Rate/drug effects , Biomarkers/blood , Fibroblast Growth Factors/blood , Iron/blood , Kidney/physiopathology , Kidney/drug effects , Vitamin D/blood , Vitamin D/analogs & derivatives , Aged, 80 and over , Treatment Outcome , Inflammation/blood , Inflammation/drug therapy , Inflammation Mediators/blood , Age Factors , Cholecalciferol/administration & dosage , Cholecalciferol/blood , Time Factors , Bone and Bones/drug effects , Bone and Bones/metabolism
13.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732553

ABSTRACT

Considering a lack of respective data, the primary objective of this study was to assess whether seasonal variation in vitamin D status (D-status) affects the extent of improvement in physical performance (PP) in conscripts during basic military training (BMT). D-status, PP and several blood parameters were measured repeatedly in conscripts whose 10-week BMT started in July (cohort S-C; n = 96) or in October (cohort A-C; n = 107). D-status during BMT was higher in S-C compared to A-C (overall serum 25(OH)D 61.4 ± 16.1 and 48.5 ± 20.7 nmol/L, respectively; p < 0.0001). Significant (p < 0.05) improvements in both aerobic and muscular endurance occurred in both cohorts during BMT. Pooled data of the two cohorts revealed a highly reliable (p = 0.000) but weak (R2 = 0.038-0.162) positive association between D-status and PP measures both at the beginning and end of BMT. However, further analysis showed that such a relationship occurred only in conscripts with insufficient or deficient D-status, but not in their vitamin D-sufficient companions. Significant (p < 0.05) increases in serum testosterone-to-cortisol ratio and decreases in ferritin levels occurred during BMT. In conclusion, a positive association exists between D-status and PP measures, but seasonal variation in D-status does not influence the extent of improvement in PP in conscripts during BMT.


Subject(s)
Military Personnel , Physical Endurance , Seasons , Vitamin D , Humans , Vitamin D/blood , Vitamin D/analogs & derivatives , Male , Physical Endurance/physiology , Young Adult , Hydrocortisone/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Nutritional Status , Testosterone/blood , Adult , Cohort Studies , Adolescent
14.
J Nutr ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729575

ABSTRACT

BACKGROUND: Iron deficiency (ID) is the most common nutritional deficiency affecting young children. Serum ferritin concentration is the preferred biomarker for measuring iron status because it reflects iron stores; however, blood collection can be distressing for young children and can be logistically difficult. A noninvasive means to measure iron status would be attractive to either diagnose or screen for ID in young children. OBJECTIVES: This study aimed to determine the correlation between urinary and serum ferritin concentrations in young children; to determine whether correcting urinary ferritin for creatinine and specific gravity improves the correlation; and to determine a urine ferritin cut point to predict ID. METHODS: Validation study was conducted using paired serum and urine collected from 3-y-old children (n = 142) participating in a longitudinal birth cohort study: the ORIGINS project in Perth, Western Australia. We calculated the sensitivity, specificity, positive, and negative predictive values of urinary ferritin amount in identifying those with ID at the clinical cut point used by the World Health Organization (serum ferritin concentration of <12 ng/mL). RESULTS: Urine ferritin, corrected for creatinine, correlated moderately with serum ferritin [r = 0.53 (0.40-0.64)] and performed well in predicting those with ID (area under the curve: 0.85; 95% confidence interval: 0.75, 0.94). Urine ferritin <2.28 ng/mg creatinine was sensitive (86%) and specific (77%) in predicting ID and had a high negative predictive value of 97%; however, the positive predictive value was low (40%) owing to the low prevalence of ID in the sample (16%). CONCLUSIONS: Urine ferritin shows good diagnostic performance for ID. This noninvasive biomarker maybe a useful screening tool to exclude ID in healthy young children; however, further research is needed in other populations.

15.
Trials ; 25(1): 270, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641845

ABSTRACT

BACKGROUND: The World Health Organization recommends universal iron supplementation for children aged 6-23 months in countries where anaemia is seen in over 40% of the population. Conventional ferrous salts have low efficacy due to low oral absorption in children with inflammation. Haem iron is more bioavailable, and its absorption may not be decreased by inflammation. This study aims to compare daily supplementation with haem iron versus ferrous sulphate on haemoglobin concentration and serum ferritin concentration after 12 weeks of supplementation. METHODS: This will be a two-arm, randomised controlled trial. Gambian children aged 6-12 months with anaemia will be recruited within a predefined geographical area and recruited by trained field workers. Eligible participants will be individually randomised using a 1:1 ratio within permuted blocks to daily supplementation for 12 weeks with either 10.0 mg of elemental iron as haem or ferrous sulphate. Safety outcomes such as diarrhoea and infection-related adverse events will be assessed daily by the clinical team (see Bah et al. Additional file 4_Adverse event eCRF). Linear regression will be used to analyse continuous outcomes, with log transformation to normalise residuals as needed. Binary outcomes will be analysed by binomial regression or logistic regression, Primary analysis will be by modified intention-to-treat (i.e., those randomised and who ingested at least one supplement dose of iron), with multiple imputations to replace missing data. Effect estimates will be adjusted for baseline covariates (C-reactive protein, alpha-1-acid glycoprotein, haemoglobin, ferritin, soluble transferrin receptor). DISCUSSION: This study will determine if therapeutic supplementation with haem iron is more efficacious than with conventional ferrous sulphate in enhancing haemoglobin and ferritin concentrations in anaemic children aged 6-12 months. TRIAL REGISTRATION: Pan African Clinical Trial Registry PACTR202210523178727.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Child , Humans , Iron , Anemia, Iron-Deficiency/diagnosis , Anemia, Iron-Deficiency/drug therapy , Salts/metabolism , Salts/therapeutic use , Gambia , Ferrous Compounds/adverse effects , Ferritins , Anemia/drug therapy , Hemoglobins/metabolism , Dietary Supplements , Inflammation/drug therapy , Heme/metabolism , Heme/therapeutic use , Randomized Controlled Trials as Topic
16.
Vet Res Commun ; 48(4): 2677-2681, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38635104

ABSTRACT

The aim of this study was to evaluate the serum iron status and its relation to hematological indexes in cyclic mares. Blood samples were taken from 40 Spanish Purebred mares on days - 5, 0, + 5 and + 16 of their cycle. Concentration of transferrin (TRF) was significantly lower on day 0 than on days + 5 and + 16, transferrin saturation (TSAT) decreased significantly on days 0 and + 16 compared to day - 5, total iron-binding capacity (TIBC) on day + 16 was significantly higher than those on days - 5 and 0, and on day + 5 it was also significantly higher than that on day 0, unsaturated iron-binding capacity (UIBC) was reduced on day + 16 compared to days - 5 and 0, red blood cell (RBC) count on day + 16 was higher than that on days - 5 and 0 (p < 0.05), with no differences in the concentration of hemoglobin (HB) and packed cell volume (PCV). TRF and TIBC (r = 0.95), RBC and HB (r = 0.64), RBC and PCV (r = 0.78), and HB and PCV (r = 0.63) were positively and significantly correlated (P < 0.05). The estrous cycle in the Spanish Purebred mare is characterized by an increase in TRF and TIBC during the follicular phase and an increase in TSAT, UIBC and RBC in the luteal phase, without changes in other hematological parameters. The coordinated activity of these parameters guarantees an adequate iron (Fe) transfer and utilization during follicular development, ovulation, and the luteal period in the mare. Therefore, the estrous cycle must be considered in the evaluation of the mare's iron status, in light of significant changes observed both in early and at late luteal phases. The magnitude of these changes and the meaning to the physiology of the mares showed that in cyclic mares, hematological parameters and indicators of iron status evolve differently depending on the phase of the cycle, and their interpretation can help to veterinarians involved in equine practice.


Subject(s)
Erythrocytes , Iron , Animals , Horses/blood , Horses/physiology , Female , Iron/blood , Erythrocytes/metabolism , Erythrocytes/chemistry , Estrous Cycle/physiology , Estrous Cycle/blood , Transferrin/metabolism , Transferrin/analysis , Erythrocyte Count/veterinary , Hematocrit/veterinary
17.
Sci Rep ; 14(1): 9179, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649459

ABSTRACT

Although serum iron status and sarcopenia are closely linked, the presence of comprehensive evidence to establish a causal relationship between them remains insufficient. The objective of this study is to employ Mendelian randomization techniques to clarify the association between serum iron status and sarcopenia. We conducted a bi-directional Mendelian randomization (MR) analysis to investigate the potential causal relationship between iron status and sarcopenia. MR analyses were performed using inverse variance weighted (IVW), MR-Egger, and weighted median methods. Additionally, sensitivity analyses were conducted to verify the reliability of the causal association results. Then, we harvested a combination of SNPs as an integrated proxy for iron status to perform a MVMR analysis based on IVW MVMR model. UVMR analyses based on IVW method identified causal effect of ferritin on appendicular lean mass (ALM, ß = - 0.051, 95% CI - 0.072, - 0.031, p = 7.325 × 10-07). Sensitivity analyses did not detect pleiotropic effects or result fluctuation by outlying SNPs in the effect estimates of four iron status on sarcopenia-related traits. After adjusting for PA, the analysis still revealed that each standard deviation higher genetically predicted ferritin was associated with lower ALM (ß = - 0.054, 95% CI - 0.092, - 0.015, p = 0.006). Further, MVMR analyses determined a predominant role of ferritin (ß = - 0.068, 95% CI - 0.12, - 0.017, p = 9.658 × 10-03) in the associations of iron status with ALM. Our study revealed a causal association between serum iron status and sarcopenia, with ferritin playing a key role in this relationship. These findings contribute to our understanding of the complex interplay between iron metabolism and muscle health.


Subject(s)
Ferritins , Iron , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sarcopenia , Humans , Sarcopenia/genetics , Sarcopenia/blood , Iron/metabolism , Iron/blood , Ferritins/blood , Male
18.
Aging Clin Exp Res ; 36(1): 59, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451343

ABSTRACT

INTRODUCTION: Although anemia is associated with low muscle strength, hemoglobin has been rarely studied considering ferritin. AIM: To analyze the association between hemoglobin and grip strength in community-dwelling older adults. METHODS: We used data from a German cohort of adults ≥ 65 years, excluding those with CRP > 10 mg/L or taking iron supplements. Grip strength (kg) was measured using a Jamar dynamometer. Analysis was performed using multiple linear regression, adjusted for established confounders. Due to interaction, age-stratified (< 80, 80 +), further sex-stratified analysis in those < 80 years old and ferritin-stratified in men < 80 years were performed. RESULTS: In total, 1294 participants were included in this analysis (mean age 75.5 years, 549 (42.3%) women, 910 (70.3%) < 80 years). On average, hemoglobin and grip strength were 14.9 g/dL and 41.3 kg for men, 13.9 g/dL and 25.1 kg for women. Hemoglobin was significantly positively associated with grip strength only among women < 80 years (ß 0.923 [95% CI 0.196, 1.650]). For men < 80 years, the association was significant when ferritin was ≥ 300 µg/L (ß 2.028 [95% CI 0.910, 3.146]). No association was detected among those participants 80 + . DISCUSSION AND CONCLUSIONS: Our data show an association between hemoglobin and grip strength only in women < 80 years old. For men < 80 years, the association was only significant with ferritin levels ≥ 300 µg/L. Considering the decreasing levels of hemoglobin and grip strength and the high prevalence of iron deficiency in older adults further analyses investigating this relationship with more iron specific parameters such as transferrin saturation are warranted.


Subject(s)
Hand Strength , Hemoglobins , Male , Humans , Female , Aged , Aged, 80 and over , Muscle Strength , Ferritins , Iron
19.
Cureus ; 16(2): e54515, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38516441

ABSTRACT

Preterm delivery remains a critical global health concern, with numerous adverse consequences for both neonate and healthcare systems. Understanding the relationship between maternal ferritin levels, as a marker of iron status, and the risk of preterm birth is the focal point of this comprehensive review. We provide insights into the multifaceted nature of this connection, highlighting factors that influence maternal ferritin levels, including dietary intake, genetic and physiological variations, comorbidities, and iron supplementation. While evidence suggests an association between low maternal ferritin levels and preterm birth, causality remains elusive, necessitating further research with robust study designs. The potential mechanisms linking maternal iron status to preterm birth, such as inflammation, infection, and oxidative stress, are explored, underscoring the need for in-depth investigations. This comprehensive review emphasizes the clinical importance of assessing and monitoring maternal ferritin levels in prenatal care and advocates for public health initiatives to raise awareness and provide targeted interventions, particularly in high-risk populations. As we strive to address these unanswered questions and embark on innovative research directions, the aim is to ultimately enhance our understanding of the complex relationship between maternal iron status and preterm birth, leading to improved maternal and child health outcomes.

20.
J Am Heart Assoc ; 13(6): e031732, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38497484

ABSTRACT

BACKGROUND: The relevance of iron status biomarkers for coronary artery disease (CAD), heart failure (HF), ischemic stroke (IS), and type 2 diabetes (T2D) is uncertain. We compared the observational and Mendelian randomization (MR) analyses of iron status biomarkers and hemoglobin with these diseases. METHODS AND RESULTS: Observational analyses of hemoglobin were compared with genetically predicted hemoglobin with cardiovascular diseases and diabetes in the UK Biobank. Iron biomarkers included transferrin saturation, serum iron, ferritin, and total iron binding capacity. MR analyses assessed associations with CAD (CARDIOGRAMplusC4D [Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus The Coronary Artery Disease Genetics], n=181 522 cases), HF (HERMES [Heart Failure Molecular Epidemiology for Therapeutic Targets), n=115 150 cases), IS (GIGASTROKE, n=62 100 cases), and T2D (DIAMANTE [Diabetes Meta-Analysis of Trans-Ethnic Association Studies], n=80 154 cases) genome-wide consortia. Observational analyses demonstrated J-shaped associations of hemoglobin with CAD, HF, IS, and T2D. In contrast, MR analyses demonstrated linear positive associations of higher genetically predicted hemoglobin levels with 8% higher risk per 1 SD higher hemoglobin for CAD, 10% to 13% for diabetes, but not with IS or HF in UK Biobank. Bidirectional MR analyses confirmed the causal relevance of iron biomarkers for hemoglobin. Further MR analyses in global consortia demonstrated modest protective effects of iron biomarkers for CAD (7%-14% lower risk for 1 SD higher levels of iron biomarkers), adverse effects for T2D, but no associations with IS or HF. CONCLUSIONS: Higher levels of iron biomarkers were protective for CAD, had adverse effects on T2D, but had no effects on IS or HF. Randomized trials are now required to assess effects of iron supplements on risk of CAD in high-risk older people.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Heart Failure , Ischemic Stroke , Stroke , Adult , Humans , Aged , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Iron , Risk Factors , Mendelian Randomization Analysis , Genome-Wide Association Study/methods , Stroke/epidemiology , Stroke/genetics , Biomarkers , Hemoglobins , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL