Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999929

ABSTRACT

The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS: C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS: Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION: Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.


Subject(s)
Mitochondria , Muscle Fibers, Skeletal , Sirolimus , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Animals , Mice , Sirolimus/pharmacology , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Amino Acids, Branched-Chain/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Insulin Resistance , TOR Serine-Threonine Kinases/metabolism , Naphthyridines
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000103

ABSTRACT

The number of people diagnosed with type 2 diabetes is on the increase worldwide. Of growing concern, the prevalence of type 2 diabetes in children and youths is increasing rapidly and mirrors the increasing burden of childhood obesity. There are many risk factors associated with the condition; some are due to lifestyle, but many are beyond our control, such as genetics. There is an urgent need to develop better therapeutics for the prevention and management of this complex condition since current medications often cause unwanted side effects, and poorly managed diabetes can result in the onset of related comorbidities. Naturally derived compounds have gained momentum for preventing and managing several complex conditions, including type 2 diabetes. Here, we provide an update on the benefits and limitations of fenugreek and its components as a therapeutic for type 2 diabetes, including its bioavailability and interaction with the microbiome.


Subject(s)
Diabetes Mellitus, Type 2 , Plant Extracts , Trigonella , Diabetes Mellitus, Type 2/drug therapy , Humans , Trigonella/chemistry , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Animals , Gastrointestinal Microbiome/drug effects
3.
Metabolites ; 14(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39057712

ABSTRACT

Branched-chain amino acids (BCAA) are correlated with severity of insulin resistance, which may partially result from mitochondrial dysfunction. Mitochondrial dysfunction is also common during insulin resistance and is regulated in part by altered mitochondrial fusion and fission (mitochondrial dynamics). To assess the effect of BCAA on mitochondrial dynamics during insulin resistance, the present study examined the effect of BCAA on mitochondrial function and indicators of mitochondrial dynamics in a myotube model of insulin resistance. C2C12 myotubes were treated with stock DMEM or DMEM with additional BCAA at 0.2 mM, 2 mM, or 20 mM to achieve a continuum of concentrations ranging from physiologically attainable to supraphysiological (BCAA overload) both with and without hyperinsulinemia-mediated insulin resistance. qRT-PCR and Western blot were used to measure gene and protein expression of targets associated with mitochondrial dynamics. Mitochondrial function was assessed by oxygen consumption, and mitochondrial content was measured using mitochondrial-specific staining. Insulin resistance reduced mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1-alpha mRNA, and citrate synthase expression mRNA, but not protein expression. Excess BCAA at 20 mM also independently reduced mitochondrial function in insulin-sensitive cells. BCAA did not alter indicators of mitochondrial dynamics at the mRNA or protein level, while insulin resistance reduced mitochondrial fission protein 1 mRNA, but not protein expression. Collectively, BCAA at excessively high levels or coupled with insulin resistances reduce mitochondrial function and content but do not appear to alter mitochondrial dynamics under the tested conditions.

4.
Bioorg Med Chem ; 110: 117839, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39029438

ABSTRACT

Peptaibols are a class of short peptides, typically 7 to 20 amino acids long, characterized by noncanonical amino acid residues such as aminoisobutyric acid (Aib). Although the helix length is shorter than the membrane thickness, the 11-residue peptaibol trichorovin-XII (TV-XII) can form ion channels in membranes. Assuming that a higher proportion of isoleucine (Ile) relative to leucine (Leu) residues is crucial for maintaining the ion channel activity of TV-XII, peptide analogs of TV-XII with varying Ile content were designed, synthesized, and evaluated. The secondary structure of all derivatives under hydrophobic conditions was confirmed by CD measurement as an α-helix-like ß-bend ribbon spiral structure. The most stable ion channel activity was found in compound 4a with maximum Ile. Furthermore, the C-terminal Ile analog showed greater ion channel activity compared to the Leu analog. This suggests that the choice between Leu and Ile can influence the expression of ion channel activity, which will be crucial for the de novo designed functional peptides.


Subject(s)
Isoleucine , Peptaibols , Isoleucine/chemistry , Isoleucine/analogs & derivatives , Peptaibols/chemistry , Peptaibols/pharmacology , Peptaibols/chemical synthesis , Ion Channels/metabolism , Ion Channels/chemistry , Protein Structure, Secondary , Structure-Activity Relationship , Amino Acid Sequence , Circular Dichroism
5.
Nutr Metab (Lond) ; 21(1): 56, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080679

ABSTRACT

BACKGROUND: The association of BCAAs (isoleucine, leucine, and valine) with cardiovascular and cerebrovascular diseases has been widely recognized by researchers, but there is limited evidence to support the relationship between BCAAs and multiple chronic conditions (MCCs) in older adults. This study aimed to explore the correlation between BCAA levels in the diets of older adults and MCCs. METHODS: Based on a health management cohort project in Nanshan District of Shenzhen, 4278 individuals over 65 years old were selected as participants via multi-stage stratified sampling from May 2018 to December 2019. Data were collected using a validated semi-quantitative food frequency questionnaire, as well as anthropometric and chronic disease reports. MCC was defined as the coexistence of two or more chronic diseases, namely, hypertension, dyslipidemia, diabetes, CAD, stroke, CKD, and CLD. Multivariate unconditional logistic regression analysis was used to analyze the relationship between dietary BCAAs and MCCs in older adults, and then, gender stratification analysis was performed. A restricted cubic spline model (a fitted smooth curve) was used to determine the dose-response relationship of isoleucine with MCCs. RESULTS: A total of 4278 older adults aged 65 and above were included in this study, with an average age of 72.73 ± 5.49 years. The cohort included 1861 males (43.50%). Regardless of whether confounding factors were corrected, isoleucine was a risk factor for MCCs (OR = 3.388, 95%CI:1.415,8.109). After gender stratification, the relationships between dietary isoleucine and MCCs (OR = 6.902, 95%CI:1.875,25.402) and between leucine (OR = 0.506,95%CI:0.309,0.830) and MCCs were significant in women, but not in men. No significant association between valine and MCCs was observed. In addition, isoleucine was a risk factor for MCCs when its intake was greater than 4.297 g/d. CONCLUSION: Isoleucine may play an important role in regulating age-related diseases. BCAAs such as isoleucine can be used as risk markers for MCCs in older adults.

6.
Int Immunopharmacol ; 139: 112687, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018693

ABSTRACT

Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.

7.
J Stroke Cerebrovasc Dis ; 33(9): 107870, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004238

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the prospective associations between plasma branched-chain amino acids (BCAAs) and the risk of ischemic stroke in men and women. METHODS: We conducted a nested case-control study within a community-based cohort in China. The cohort consisted of 15,926 participants in 2013-2018. A total of 321 ischemic stroke cases were identified during the follow up and individually matched with 321 controls by date of birth (±1 year) and sex. Females accounted for 55.8% (n = 358, 179 cases vs 179 controls) of the study population. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between plasma BCAAs and ischemic stroke risk by conditional logistic regression. RESULTS: Elevated plasma isoleucine was associated with a higher risk of ischemic stroke in women. The OR for the highest compared to the lowest quartile was 2.22 (95% CI: 1.11-4.44, P trend = 0.005) after adjustment for body mass index, education attainment, smoking, hypertension, renal function, menopause and physical activity. A similar association was found for total BCAAs (adjusted OR = 2.03, 95% CI: 1.05-3.95, P trend = 0.04). In contrast, no significant association of plasma BCAAs with ischemic stroke risk was observed in men. CONCLUSIONS: Plasma isoleucine and total BCAAs were significantly associated with ischemic stroke risk in women, but not in men, highlighting sex differences in BCAAs metabolism and stroke pathogenesis.

8.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895446

ABSTRACT

The amino acid composition of the diet has recently emerged as a critical regulator of metabolic health. Consumption of the branched-chain amino acid isoleucine is positively correlated with body mass index in humans, and reducing dietary levels of isoleucine rapidly improves the metabolic health of diet-induced obese male C57BL/6J mice. However, it is unknown how sex, strain, and dietary isoleucine intake may interact to impact the response to a Western Diet (WD). Here, we find that although the magnitude of the effect varies by sex and strain, reducing dietary levels of isoleucine protects C57BL/6J and DBA/2J mice of both sexes from the deleterious metabolic effects of a WD, while increasing dietary levels of isoleucine impairs aspects of metabolic health. Despite broadly positive responses across all sexes and strains to reduced isoleucine, the molecular response of each sex and strain is highly distinctive. Using a multi-omics approach, we identify a core sex- and strain- independent molecular response to dietary isoleucine, and identify mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype. Intriguingly, the metabolic effects of reduced isoleucine in mice are not associated with FGF21 - and we find that in humans plasma FGF21 levels are likewise not associated with dietary levels of isoleucine. Finally, we find that foods contain a range of isoleucine levels, and that consumption of dietary isoleucine is lower in humans with healthy eating habits. Our results demonstrate that the dietary level of isoleucine is critical in the metabolic and molecular response to a WD, and suggest that lowering dietary levels of isoleucine may be an innovative and translatable strategy to protect from the negative metabolic consequences of a WD.

9.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892515

ABSTRACT

Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS: C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS: Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION: Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.


Subject(s)
Amino Acids, Branched-Chain , Fructose , Insulin Resistance , Muscle Fibers, Skeletal , Animals , Fructose/pharmacology , Amino Acids, Branched-Chain/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Oxygen Consumption/drug effects
10.
Front Chem ; 12: 1369542, 2024.
Article in English | MEDLINE | ID: mdl-38800578

ABSTRACT

This study consists of four steps. In the first, two different biocompatible organogelators were synthesized, starting with the L-isoleucine amino acid to obtain amide compounds. In the second step, the gelation potential of synthesized organogelators with fatty acid esters and organic solvents was investigated. These esters were chosen as gelation liquids due to their biocompatibility and also their penetration-enhancing properties when the drug is administered via the skin. After the minimum gel concentrations (MGCs) of the organogelators were determined, the melting point of gel T g was found, and then, ΔH g gelation enthalpy values were found by means of the Van't Hoff equation. In addition to the gelation abilities and capacities of the organogelators being thus synthesized, their thermal stabilities were also determined. In the third stage of the study, the network which occurred during the formation of the gels was screened by an SEM device, and their characterizations were determined. In the study's fourth stage, the gels were loaded with ibuprofen and naproxen-known for their non-steroidal anti-inflammatory and analgesic effects-and their drug-loading capacities were thus determined.

11.
Geroscience ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755467

ABSTRACT

The population around the world is graying, and as many of these individuals will spend years suffering from the burdens of age associated diseases, understanding how to increase healthspan, defined as the period of life free from disease and disability, is an urgent priority of geroscience research. The lack of agreed-upon quantitative metrics for measuring healthspan in aging mice has slowed progress in identifying interventions that do not simply increase lifespan, but also healthspan. Here, we define FAMY (Frailty-Adjusted Mouse Years) and GRAIL (Gauging Robust Aging when Increasing Lifespan) as new summary statistics for quantifying healthspan in mice. FAMY integrates lifespan data with longitudinal measurements of a widely utilized clinical frailty index, while GRAIL incorporates these measures and also adds information from widely utilized healthspan assays and the hallmarks of aging. Both metrics are conceptually similar to quality-adjusted life years (QALY), a widely utilized measure of disease burden in humans, and can be readily calculated from data acquired during longitudinal and cross-sectional studies of mouse aging. We find that interventions generally thought to promote health, including calorie restriction, robustly improve healthspan as measured by FAMY and GRAIL. Finally, we show that the use of GRAIL provides new insights, and identify dietary restriction of protein or isoleucine as interventions that robustly promote healthspan but not longevity in female HET3 mice. We suggest that the routine integration of these measures into studies of aging in mice will allow the identification and development of interventions that promote healthy aging even in the absence of increased lifespan.

12.
EFSA J ; 22(4): e8726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585213

ABSTRACT

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of l-isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 as a nutritional feed additive for use in feed and in water for drinking for all animal species. The production strain is non-genetically modified, qualifies for the QPS approach to safety assessment when used for production purposes, is susceptible to the relevant antibiotics and contains no antimicrobial resistance genes of concern. No viable cells of the production strain were detected in the final product. The additive does not give rise to any safety concern regarding the production strain. l-Isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 is considered safe for the target species, the consumer and the environment. Regarding the use in water, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) reiterates its concerns over the safety for the target species of l-isoleucine administered simultaneously via water for drinking and feed owing to the risk of nutritional imbalances and hygienic reasons. In the absence of data, the FEEDAP Panel is not in a position to conclude on the potential of l-isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 to be irritant to skin and/or eyes, or as a dermal sensitiser. Due to the high dusting potential, exposure by inhalation is likely. l-Isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 is considered as an efficacious source of the essential amino acid l-isoleucine for non-ruminant animal species. For the supplemental l-isoleucine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen.

13.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612625

ABSTRACT

Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.


Subject(s)
Camellia sinensis , Cyclopentanes , Drought Resistance , Oxylipins , Isoleucine , Polyphenols/pharmacology , Camellia sinensis/genetics , Flavonoids , Tea
14.
Ann Geriatr Med Res ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651272

ABSTRACT

Background: Advances in blood biomarker discovery have enabled the improved diagnosis and prognosis of Alzheimer's disease (AD). Most branched-chain amino acids, except isoleucine (Ile), are correlated with both mild cognitive impairment (MCI) and AD. Therefore, this study investigated the association between serum Ile levels and MCI/AD. Methods: This study stratified 700 participants from the Alzheimer's Disease Neuroimaging Initiative database into four diagnostic groups: cognitively normal, stable MCI, progressive MCI, and AD. Analysis of covariance and chi-square analyses were used to test the demographic data. Receiver operating curve analyses were used to calculate the diagnostic accuracy of different biomarkers and were compared using MedCalc 20. Additionally, Cox proportional hazards models were used to measure the ability of serum Ile levels to predict disease conversion. Finally, a linear mixed-effects model was used to evaluate the associations between serum Ile levels and cognition, brain structure, and metabolism. Results: Serum Ile concentration was decreased in AD and demonstrated significant diagnostic efficacy. The combination of serum Ile and cerebrospinal fluid (CSF) phosphorylated tau (P-tau) levels improved the diagnostic accuracy in AD compared to T-tau alone. Serum Ile levels significantly predicted the conversion from MCI to AD (cutoff value = 78.3 µM). Finally, the results of this study also revealed a correlation between serum Ile levels and the Alzheimer's Disease Assessment Scale cognitive subscale Q4. Conclusions: Serum Ile level may be a potential biomarker of AD. Ile had independent diagnostic efficacy and significantly improved the diagnostic accuracy of CSF P-tau in AD. Patients with MCI with a lower serum Ile level had a higher risk of progression to AD and a worse cognition assessment.

15.
Amino Acids ; 56(1): 19, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460031

ABSTRACT

OBJECTIVE: This study aimed to investigate the relationship between dietary branched-chain amino acids (BCAAs) and the risk of developing hypertension. METHODS: A cohort study of 14,883 Chinese adults without hypertension at baseline with were followed for an average of 8.9 years. Dietary intakes of BCAAs, including Ile, Leu, and Val, were collected using 3-day 24-h meal recall and household condiment weighing. Cox proportional hazards regression, restricted cubic splines, interaction analysis, and sensitivity analysis were used to assess the relationship between dietary BCAAs and risk of developing self-reported hypertension, adjusting for age, gender, region, body mass index (BMI), smoking and drinking status, physical activity, energy intake, salt intake. RESULTS: Among 14,883 study subjects, 6386(42.9%) subjects aged ≥ 45 years at baseline, 2692 (18.1%) had new-onset hypertension during the study period, with a median age of 56 years. High levels of dietary BCAAs were associated with an increased risk of new-onset hypertension. Compared with the 41st-60th percentile, multivariable adjusted hazard ratio (HR) for new-onset hypertension was 1.16 (95% CI 1.01-1.32) for dietary BCAAs 61st-80th percentiles, 1.30 (1.13-1.50) for 81st-95th, 1.60 (1.32-1.95) for 96th-100th. The cut-off value of new-onset hypertension risk, total BCAAs, Ile, Leu, and Val were 15.7 g/day, 4.1 g/day, 6.9 g/day, 4.6 g/day, respectively, and the proportion of the population above these intake values were 13.9%, 13.1%, 15.4%, and 14.4%, respectively. Age, BMI, and salt intake had an interactive effect on this relationship (P < 0.001). CONCLUSION: There was a significant positive association between total dietary BCAAs, Ile, Leu, Val intake and the risk of developing hypertension, after adjustment for confounders. This relationship was influenced by age, BMI, and salt intake. Further research is needed to clarify the mechanism and potential role of BCAAs in the pathogenesis of hypertension.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Adult , Humans , Middle Aged , Cohort Studies , Prospective Studies , Amino Acids, Branched-Chain , Hypertension/epidemiology
16.
Nutrients ; 16(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542793

ABSTRACT

Protein intake reportedly increases the risk of diabetes; however, the results have been inconsistent. Diabetes in adulthood may be attributed to early life dietary amino acid composition. This study aimed to investigate the association between amino acid composition and glycemic biomarkers in adolescents. Dietary intake was assessed using a food frequency questionnaire, and fasting glucose and insulin levels were measured in 1238 eighth graders. The homeostatic model assessment (HOMA) indices (insulin resistance and ß-cell function) were calculated. Anthropometrics were measured and other covariates were obtained from a questionnaire. Amino acid composition was isometric log transformed according to the compositional data analysis, which was used as explanatory variables in multivariate linear regression models for glucose, insulin, and HOMA indices. Only the association between glucose and leucine was significant. In replacement of other amino acids with leucine, an increase of 0.1% of total amino acids correlated with a lower glucose level (-1.02 mg/dL). One-to-one substitution of leucine for isoleucine or methionine decreased glucose (-2.98 and -2.28 mg/dL, respectively). Associations with other biomarkers were not observed. In conclusion, compositional data analysis of amino acids revealed an association only with glucose in adolescents; however, the results of this study should be verified in other populations.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Humans , Adolescent , Leucine , Japan , Blood Glucose/metabolism , Insulin , Insulin Resistance/physiology , Amino Acids , Glucose , Biomarkers
17.
J Am Soc Mass Spectrom ; 35(4): 705-713, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38440975

ABSTRACT

Isomerized amino acid residues have been identified in many peptides extracted from tissues or excretions of humans and animals. These isomerized residues can play key roles by affecting biological activity or by exerting an influence on the process of aging. Isomerization occurs spontaneously and does not result in a mass shift. Thus, identifying and localizing isomerized residues in biological samples is challenging. Herein, we introduce a fast and efficient method using tandem mass spectrometry (MS) to locate isomerized residues in peptides. Although MS2 spectra are useful for identifying peptides that contain an isomerized residue, they cannot reliably localize isomerization sites. We show that this limitation can be overcome by utilizing MS3 experiments to further evaluate each fragment ion from the MS2 stage. Comparison at the MS3 level, utilizing statistical analyses, reveals which MS2 fragments differ between samples and, therefore, must contain the isomerized sites. The approach is similar to previous work relying on ion mobility to discriminate MS2 product ions by collision cross-section. The MS3 approach can be implemented using either ion-trap or beam-type collisional activation and is compatible with the quantification of isomer mixtures when coupled to a calibration curve. The method can also be implemented in combination with liquid chromatography in a targeted approach. Enabling the identification and localization of isomerized residues in peptides with an MS-only methodology will expand accessibility to this important information.


Subject(s)
Peptides , Tandem Mass Spectrometry , Humans , Animals , Tandem Mass Spectrometry/methods , Peptides/chemistry , Amino Acids , Chromatography, Liquid/methods , Isomerism
18.
Neuron ; 112(9): 1397-1415.e6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38377989

ABSTRACT

Defects in tRNA biogenesis are associated with multiple neurological disorders, yet our understanding of these diseases has been hampered by an inability to determine tRNA expression in individual cell types within a complex tissue. Here, we developed a mouse model in which RNA polymerase III is conditionally epitope tagged in a Cre-dependent manner, allowing us to accurately profile tRNA expression in any cell type in vivo. We investigated tRNA expression in diverse nervous system cell types, revealing dramatic heterogeneity in the expression of tRNA genes between populations. We found that while maintenance of levels of tRNA isoacceptor families is critical for cellular homeostasis, neurons are differentially vulnerable to insults to distinct tRNA isoacceptor families. Cell-type-specific translatome analysis suggests that the balance between tRNA availability and codon demand may underlie such differential resilience. Our work provides a platform for investigating the complexities of mRNA translation and tRNA biology in the brain.


Subject(s)
Brain , Homeostasis , Neurons , RNA, Transfer , Animals , RNA, Transfer/genetics , RNA, Transfer/metabolism , Homeostasis/physiology , Mice , Brain/metabolism , Neurons/metabolism , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Mice, Transgenic
19.
J Agric Food Chem ; 72(10): 5339-5347, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38417143

ABSTRACT

S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.


Subject(s)
Cysteine , Cysteine/analogs & derivatives , Escherichia coli , Humans , Cysteine/metabolism , Escherichia coli/genetics , Sulfoxides/metabolism , Genetic Engineering
20.
J Am Heart Assoc ; 13(5): e032084, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38420789

ABSTRACT

BACKGROUND: This study aimed to investigate the causal relationships between branched-chain amino acids (BCAAs) and the risks of hypertension via meta-analysis and Mendelian randomization analysis. METHODS AND RESULTS: A meta-analysis of 32 845 subjects was conducted to evaluate the relationships between BCAAs and hypertension. In Mendelian randomization analysis, independent single-nucleotide polymorphisms associated with BCAAs at the genome-wide significance level were selected as the instrumental variables. Meanwhile, the summary-level data for essential hypertension and secondary hypertension end points were obtained from the FinnGen study. As suggested by the meta-analysis results, elevated BCAA levels were associated with a higher risk of hypertension (isoleucine: summary odds ratio, 1.26 [95% CI, 1.08-1.47]; leucine: summary odds ratio, 1.28 [95% CI, 1.07-1.52]; valine: summary odds ratio, 1.32 [95% CI, 1.12-1.57]). Moreover, the inverse variance-weighted method demonstrated that an elevated circulating isoleucine level might be the causal risk factor for essential hypertension but not secondary hypertension (essential hypertension: odds ratio, 1.22 [95% CI, 1.12-1.34]; secondary hypertension: odds ratio, 0.96 [95% CI, 0.54-1.68]). CONCLUSIONS: The increased levels of 3 BCAAs positively correlated with an increased risk of hypertension. Particularly, elevated isoleucine level is a causal risk factor for essential hypertension. Increased levels of leucine and valine also tend to increase the risk of essential hypertension, but further verification is still warranted.


Subject(s)
Amino Acids, Branched-Chain , Hypertension , Humans , Amino Acids, Branched-Chain/metabolism , Isoleucine/genetics , Leucine , Mendelian Randomization Analysis , Valine , Hypertension/epidemiology , Hypertension/genetics , Hypertension/chemically induced , Essential Hypertension , Genome-Wide Association Study
SELECTION OF CITATIONS
SEARCH DETAIL