Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
1.
Adv Healthc Mater ; : e2402038, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39318105

ABSTRACT

Early diagnostics of breast cancer is crucial to reduce the risk of cancer metastasis and late relapse. Exosome, which contains distinct information of its origin, can be the target object as a liquid biopsy. However, its low sensitivity and inadequate diagnostic tools interfere with the point-of-care testing (POCT) of the exosome. Recently, Surface-enhanced Raman Scattering (SERS) spectroscopy, which amplifies the Raman scattering, has been proved as a promising tool for exosome detection. However, the fabrication process of SERS probe or substrate is still inefficient and far from large-scale production. This study proposes rapid and label-free detection of breast cancer-derived exosomes by statistical analysis of SERS spectra using silver-nanoparticle-based SERS substrate fabricated by selective laser ablation and melting (SLAM). Employing silver nanowires and optimizing laser process parameters enable rapid and low-energy fabrication of SERS substrate. The functionalities including sensitivity, reproducibility, stability, and renewability are evaluated using rhodamine 6G as a probe molecule. Then, the feasibility of POCT is examined by the statistical analysis of SERS spectra of exosomes from malignant breast cancer cells and non-tumorigenic breast epithelial cells. The presented framework is anticipated to be utilized in other biomedical applications, facilitating cost-effective and large-scale production performance.

2.
Mikrochim Acta ; 191(10): 617, 2024 09 24.
Article in English | MEDLINE | ID: mdl-39316098

ABSTRACT

A new, sensitive, and cost-effective lab-on-paper-based immunosensor was designed based on electrochemical impedance spectroscopy (EIS) for the detection of exosomes. EIS was selected as the determination method since there was a surface blockage in electron transfer by binding the exosomes to the transducer. Briefly, the carbon working electrode (WE) on the paper electrode (PE) was modified with gold particles (AuPs@PE) and then conjugated with anti-CD9 (Anti-CD9/AuPs@PE) for the detection of exosomes. Variables involved in the biosensor design were optimized with the univariate mode. The developed method presents the limit of detection of  8.7 × 102 exosomes mL-1, which is lower than that of many other available methods under the best conditions. The biosensor was also tested with urine samples from cancer patients with high recoveries. Due to this  a unique, low-cost, biodegradable technology is presented that can directly measure exosomes without labeling them for early cancer or metastasis detection.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , Exosomes , Gold , Limit of Detection , Paper , Dielectric Spectroscopy/methods , Biosensing Techniques/methods , Exosomes/chemistry , Humans , Gold/chemistry , Electrodes , Antibodies, Immobilized/immunology , Tetraspanin 29/analysis , Tetraspanin 29/urine , Metal Nanoparticles/chemistry , Immunoassay/methods
3.
ACS Sens ; 9(9): 4803-4810, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39283984

ABSTRACT

CRISPR/Cas12a has been widely used in molecular diagnostics due to its excellent trans-cleavage activity. However, conventional reporters, such as F/Q-labeled single-stranded DNA (ssDNA) reporters, enzyme-labeled reporters, and spherical nucleic acid reporters, require complex modification or labeling processes. In this study, we have developed a rapid, universal, and label-free CRISPR/Cas12a-based biomarker detection platform via designing a G-quadruplex (G4) containing a hairpin structure as the reporter. The hairpin loop design of hairpin G4 improves the cleavage efficiency of Cas12a and the signal strength of the G4 binding ligand. Meanwhile, the incorporation of a G4 binding dye (protoporphyrin IX) eliminates the need for complex modifications. The CRISPR-hairpin G4 detection platform is capable of detecting ssDNA, double-stranded DNA, genetic RNAs, and miRNAs. Moreover, this platform achieves label-free detection in clinical samples, demonstrating its practical applicability and efficiency.


Subject(s)
CRISPR-Cas Systems , G-Quadruplexes , CRISPR-Cas Systems/genetics , Humans , DNA, Single-Stranded/chemistry , Biomarkers/analysis , MicroRNAs/analysis , CRISPR-Associated Proteins/chemistry , Biosensing Techniques/methods , Endodeoxyribonucleases/chemistry , DNA/chemistry , DNA/genetics , Protoporphyrins/chemistry , Bacterial Proteins
4.
Biosens Bioelectron ; 266: 116695, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39241340

ABSTRACT

Scalable electronic devices that can detect target biomarkers from clinical samples hold great promise for point-of-care nucleic acid testing, but still cannot achieve the detection of target molecules at an attomolar range within a short timeframe (<1 h). To tackle this daunting challenge, we integrate graphene field-effect transistors (GFETs) with exponential target recycling and hybridization chain reaction (TRHCR) to detect oligonucleotides (using miRNA as a model disease biomarker), achieving a detection limit of 100 aM and reducing the sensing time by 30-fold, from 15 h to 30 min. In contrast to traditional linear TRHCR, our exponential TRHCR enables the target miRNA to initiate an autocatalytic system with exponential kinetics, significantly accelerating the reaction speed. The resulting reaction products, long-necked double-stranded polymers with a negative charge, are effectively detected by the GFET through chemical gating, leading to a shift in the Dirac voltage. Therefore, by monitoring the magnitude of this voltage shift, the target miRNA is quantified with high sensitivity. Consequently, our approach successfully detects 22-mer miRNA at concentrations as low as 100 aM in human serum samples, achieving the desired short timeframe of 30 min, which is congruent with point-of-care testing, and demonstrates superior specificity against single-base mismatched interfering oligonucleotides.


Subject(s)
Biosensing Techniques , Graphite , Limit of Detection , MicroRNAs , Nucleic Acid Hybridization , Transistors, Electronic , MicroRNAs/blood , MicroRNAs/analysis , Graphite/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Humans , Equipment Design
5.
Sensors (Basel) ; 24(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39275599

ABSTRACT

The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach-Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk. One of the two MZIs of the chip was modified with bovine κ-casein, while the other was modified with bovine serum albumin to serve as a blank. All assay steps were performed by immersion of the chip side where the MZIs are positioned into the reagent solutions, leading to a photonic dipstick immunosensor. Thus, the chip was first immersed in a mixture of milk with anti-bovine κ-casein antibody and then in a secondary antibody solution for signal enhancement. A limit of detection of 0.05% v/v cow milk in ewe, goat, or donkey milk was achieved in 12 min using a 50-times diluted sample. This fast, sensitive, and simple assay, without the need for sample pre-processing, microfluidics, or pumps, makes the developed sensor ideal for the detection of milk adulteration at the point of need.


Subject(s)
Biosensing Techniques , Caseins , Equidae , Goats , Milk , Animals , Milk/chemistry , Milk/immunology , Cattle , Caseins/analysis , Caseins/immunology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Sheep , Immunoassay/methods , Food Contamination/analysis , Photons
6.
Nano Lett ; 24(37): 11520-11528, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39234992

ABSTRACT

Small-molecule biomarkers are ubiquitous in biological fluids with pathological implications, but major challenges persist in their quantitative analysis directly in complex clinical samples. Herein, a molecular-sieving label-free surface-enhanced Raman spectroscopy (SERS) biosensor is reported for selective quantitative analysis of trace small-molecule trimetazidine (TMZ) in clinical samples. Our biosensor is fabricated by decorating a superhydrophobic monolayer of microporous metal-organic frameworks (MOF) shell-coated Au nanostar nanoparticles on a silicon substrate. The design strategy principally combines the hydrophobic surface-enabled physical confinement and preconcentration, MOF-assisted molecular enrichment and sieving of small molecules, and sensitive SERS detection. Our biosensor utilizes such a "molecular confinement-and-sieving" strategy to achieve a five orders-of-magnitude dynamic detection range and a limit of detection of ≈0.5 nM for TMZ detection in either urine or whole blood. We further demonstrate the applicability of our biosensing platform for longitudinal label-free SERS detection of the TMZ level directly in clinical samples in a mouse model.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , Metal-Organic Frameworks , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Animals , Mice , Gold/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Humans , Metal-Organic Frameworks/chemistry , Biomarkers/urine , Biomarkers/analysis , Surface Properties , Limit of Detection
7.
ACS Nano ; 18(39): 26891-26901, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39288204

ABSTRACT

Field-effect transistor (FET) biosensors based on nanomaterials are promising in the areas of food safety and early disease diagnosis due to their ultrahigh sensitivity and rapid response. However, most academically developed FET biosensors lack real-world reproducibility and comprehensive methodological validation to meet the standards of regulatory bodies. Here, highly uniform and well-packaged semiconducting carbon nanotube (CNT) FET biosensor chips were developed and assessed for the plug-and-play sensing for the rapid and highly sensitive detection of aflatoxin B1 (AFB1) in real food samples to meet international standards. In order to meet the requirements for reproducibility and stability, a scalable residual-free passivation and packaging process was developed for CNT FET biosensors. Portable detection systems were then constructed for on-site detection. The resulting packaged chips were functionalized with nucleic aptamers to enable highly selective detection of AFB1 in food samples with a detection limit (LOD) of 0.55 fg/mL (standard) for AFB1 and cross-reactivity coefficients to interferences as low as 1.8 × 10-7 in simulated solutions. Utilizing the portable detection system, on-site real food detection was achieved with a rapid response time less than 60 s, and LOD of 0.25 pg/kg (standard) in complex corn sample matrices. Single-blind tests demonstrated the ability of the chips to detect AFB1-positive food with 100% accuracy, using a set of 30 peanut samples. Validation experiments confirmed that the detection range, stability, and repeatability met international standards. This study showcased the accuracy, reliability, and potential practical applications of CNT FET biosensor chips in areas such as food safety and rapid biomedical testing.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Nanotubes, Carbon , Transistors, Electronic , Nanotubes, Carbon/chemistry , Biosensing Techniques/instrumentation , Aflatoxin B1/analysis , Reproducibility of Results , Food Contamination/analysis , Limit of Detection , Food Analysis/instrumentation , Arachis/chemistry , Aptamers, Nucleotide/chemistry
8.
Talanta ; 279: 126613, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39096788

ABSTRACT

The similar transmission patterns and early symptoms of respiratory viral infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza (H1N1), and respiratory syncytial virus (RSV), pose substantial challenges in the diagnosis, therapeutic management, and handling of these infectious diseases. Multiplexed point-of-care testing for detection is urgently needed for prompt and efficient disease management. Here, we introduce an electrochemical paper-based analytical device (ePAD) platform for multiplexed and label-free detection of SARS-CoV-2, H1N1, and RSV infection using immobilized pyrrolidinyl peptide nucleic acid probes. Hybridization between the probes and viral nucleic acid targets causes changes in the electrochemical response. The resulting sensor offers high sensitivity and low detection limits of 0.12, 0.35, and 0.36 pM for SARS-CoV-2 (N gene), H1N1, and RSV, respectively, without showing any cross-reactivities. The amplification-free detection of extracted RNA from 42 nasopharyngeal swab samples was successfully demonstrated and validated against reverse-transcription polymerase chain reaction (range of cycle threshold values: 17.43-25.89). The proposed platform showed excellent clinical sensitivity (100 %) and specificity (≥97 %) to achieve excellent agreement (κ ≥ 0.914) with the standard assay, thereby demonstrating its applicability for the screening and diagnosis of these respiratory diseases.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Influenza A Virus, H1N1 Subtype , Paper , Peptide Nucleic Acids , SARS-CoV-2 , Biosensing Techniques/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/genetics , Electrochemical Techniques/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Peptide Nucleic Acids/chemistry , COVID-19/diagnosis , COVID-19/virology , RNA, Viral/analysis , RNA, Viral/genetics , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Limit of Detection , Influenza, Human/diagnosis , Influenza, Human/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/genetics
9.
Anal Chim Acta ; 1320: 343016, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142787

ABSTRACT

BACKGROUND: Direct detection of the notorious explosive triacetone triperoxide (TATP) is very difficult because it lacks facile ionization and UV absorbance or fluorescence. Besides, the current indirect methods are time-consuming and need a pre-step for TATP cleavage to hydrogen peroxide. Moreover, they commonly show significant false-positive results in the presence of some camouflage which limits their field applications. Herein, for the first time, a novel label-free field-applicable spectrofluorimetric nanobiosensor was developed for direct TATP detection using a novel activated-protein protected gold nanocluster (ABSA-AuNCs; QY = 28.3 %) synthesized by a combined protein-assisted-ultrasonication procedure. RESULTS: The ABSA-AuNCs revealed a fluorescence spectrum centered at 330.0 nm which was significantly quenched by TATP (binding constant = 154.06 M-1; ΔG = -12.5 kJ mol-1; E(%) = 88.5 %). This phenomenon was used as a basis for direct TATP quantification, providing a working range of 0.01-40.0 mg L-1 and a detection limit of 6.7 µg L-1 which is the lowest LOD provided for TATP detection up to now. A %RSD of 0.9 % and 1.56 % was obtained for repeatability and inter-day reproducibility, respectively. The selectivity was checked against a variety of camouflages, revealing ultra-selectivity. Several synthetic samples prepared by several camouflages and real samples (clay soil and real water media) were analyzed, revealing quantitative recoveries of TATP. SIGNIFICANCE: During the production of the notorious explosive TATP, it can be discharged into water and soil. This novel method eliminated the false-positive results of traditional methods and is applicable for direct quantitative detection of camouflaged TATP and its residues in real soil and water samples in a highly short response time (2 min). The camouflaged TATP analysis is important for tracking the terrorist attacks in field conditions and analysis of soil and water can provide a first indication of the location of the production site.


Subject(s)
Explosive Agents , Gold , Heterocyclic Compounds, 1-Ring , Metal Nanoparticles , Peroxides , Spectrometry, Fluorescence , Spectrometry, Fluorescence/methods , Explosive Agents/analysis , Heterocyclic Compounds, 1-Ring/chemistry , Metal Nanoparticles/chemistry , Peroxides/analysis , Peroxides/chemistry , Gold/chemistry , Limit of Detection , Biosensing Techniques/methods
10.
ACS Appl Bio Mater ; 7(8): 5258-5267, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39103296

ABSTRACT

Sensitive detection of cardiac troponin I (cTnI) is of great significance in the diagnosis of a fatal acute myocardial infarction. A redox-active nanocomposite of copper(II)-tannic acid@Cu (CuTA@Cu) was herein prepared on the surface of a glassy carbon electrode by electrochemical deposition of metallic copper combined with a metal stripping strategy. Then, HAuCl4 was in situ reduced to gold nanoparticles (AuNPs) by strong reductive catechol groups in the TA ligand. The AuNPs/CuTA@Cu composite was further utilized as a bifunctional matrix for the immobilization of the cTnI antibody (anti-cTnI), producing an electrochemical immunosensor. Electrochemical tests show that the immunoreaction between anti-cTnI and target cTnI can cause a significant reduction of the electrochemical signal of CuTA@Cu. It can be attributed to the insulating characteristic of the immunocomplex and its barrier effect to the electrolyte ion diffusion. From the signal changes of CuTA@Cu, cTnI can be analyzed in a wide range from 10 fg mL-1 to 10 ng mL-1, with an ultralow detection limit of 0.65 fg mL-1. The spiked recovery assays show that the immunosensor is reliable for cTnI determination in human serum samples, demonstrating its promising application in the early clinical diagnosis of myocardial infarction.


Subject(s)
Copper , Electrochemical Techniques , Gold , Materials Testing , Metal Nanoparticles , Troponin I , Gold/chemistry , Copper/chemistry , Troponin I/blood , Troponin I/analysis , Troponin I/immunology , Metal Nanoparticles/chemistry , Humans , Immunoassay/methods , Biosensing Techniques , Biocompatible Materials/chemistry , Particle Size , Polyphenols
11.
Biosensors (Basel) ; 14(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39194593

ABSTRACT

Dexamethasone (Dex) is a widely used glucocorticoid in medical practice, with applications ranging from allergies and inflammation to cerebral edema and shock. Despite its therapeutic benefits, Dex is classified as a prohibited substance for athletes due to its potential performance-enhancing effects. Consequently, there is a critical need for a convenient and rapid detection platform to enable prompt and accurate testing of this drug. In this study, we propose a label-free Förster Resonance Energy Transfer (FRET) aptasensor platform for Dex detection utilizing conjugated polymers (CPs), cationic conjugated polymers (CCPs), and gene finder probes (GFs). The system operates by exploiting the electrostatic interactions between positively charged CCPs and negatively charged DNA, facilitating sensitive and specific Dex detection. The label-free FRET aptasensor platform demonstrated robust performance in detecting Dex, exhibiting high selectivity and sensitivity. The system effectively distinguished Dex from interfering molecules and achieved stable detection across a range of concentrations in a commonly used sports drink matrix. Overall, the label-free FRET Dex detection system offers a simple, cost-effective, and highly sensitive approach for detecting Dex in diverse sample matrices. Its simplicity and effectiveness make it a promising tool for anti-doping efforts and other applications requiring rapid and accurate Dex detection.


Subject(s)
Biosensing Techniques , Cations , Dexamethasone , Fluorescence Resonance Energy Transfer , Polymers , Dexamethasone/analysis , Polymers/chemistry , Aptamers, Nucleotide/chemistry , DNA , Humans , Limit of Detection
12.
Bioelectrochemistry ; 160: 108780, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39018611

ABSTRACT

To advance cervical cancer diagnostics, we propose a state-of-the-art label-free electrochemical immunosensor designed for the simultaneous detection of multiple biomarker proteins (p16INK4a, p53, and Ki67). This immunosensor is constructed using a polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide (PEI-AuNPs/2D WS2/GO) composite-modified three-screen-printed carbon electrode (3SPCE) array. The 2D WS2/GO hybrid provides a large specific surface area for supporting well-dispersed PEI-AuNPs and adsorbed redox-active species, enhancing overall performance. The PEI-AuNPs-decorated 2D WS2/GO composite not only improves electrode conductivity but also increases the antibody loading capacity. Redox-active species, including Cd2+ ions, 2,3-diaminophenazine (DAP), and methylene blue (MB), serve as distinct signaling compounds to quantitatively detect the cervical cancer biomarkers p16INK4a, p53, and Ki67, respectively. Additionally, the immunosensor demonstrates the detection with high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. This immunosensor demonstrates a good linear relationship with the logarithm of protein concentrations. Additionally, the immunosensor also demonstrates high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. Our promising results and the successful application of the immunosensor in detecting three tumor markers in human serum highlight its potential for clinical diagnosis of cervical cancer.


Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Disulfides , Gold , Graphite , Metal Nanoparticles , Nanocomposites , Oxidation-Reduction , Polyethyleneimine , Uterine Cervical Neoplasms , Graphite/chemistry , Humans , Uterine Cervical Neoplasms/diagnosis , Female , Metal Nanoparticles/chemistry , Gold/chemistry , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Nanocomposites/chemistry , Polyethyleneimine/chemistry , Biosensing Techniques/methods , Disulfides/chemistry , Immunoassay/methods , Electrochemical Techniques/methods , Tungsten/chemistry , Limit of Detection
13.
Food Chem ; 458: 140231, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38959803

ABSTRACT

Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.


Subject(s)
Aflatoxin B1 , Food Contamination , Limit of Detection , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Aflatoxin B1/analysis , Spectrum Analysis, Raman/methods , Silver/chemistry , Metal Nanoparticles/chemistry , Food Contamination/analysis
14.
Anal Chim Acta ; 1318: 342930, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39067935

ABSTRACT

BACKGROUND: Berberine (BBR), a key component in Kampo medicine, is a cationic benzylisoquinoline alkaloid whose detection plays a critical role in the quality control of these traditional remedies. Traditional methods for detecting BBR often involve complex procedures, which can be time-consuming and costly. To address this challenge, our study focuses on developing a simpler, faster, and more efficient detection method for BBR in Kampo medicine formulations. RESULTS: We successfully developed a rapid fluorometric detection method for BBR using colloidal gold nanoparticle-based systematic evolution of ligands by exponential enrichment (GOLD-SELEX). Initially, specific single-stranded DNA (ssDNA) sequences were selected for their ability to enhance BBR's fluorescence intensity. The optimal ssDNA sequence, identified as BBR38, was further truncated to produce BBR38S, a stem-loop ssDNA that improved fluorescence upon interaction with BBR. To further enhance the fluorescence, the BBR38S aptamer underwent additional modifications, including stem truncation and nucleotide mutations, resulting in the higher fluorescence variant BBR38S-3 A10C. The final product, TetBBR38S, a tetramer version of BBR38S-3 A10C, exhibited a linear detection range of 0.780-50.0 µg mL-1 and a limit of detection of 0.369 µg mL-1. The assay demonstrated sufficient selectivity and was successfully applied to analyze 128 different Kampo medicine formulations, accurately detecting BBR content with high precision. SIGNIFICANCE: This study represents an advancement in Kampo medicine research, marking the first successful application of an aptamer-based approach for BBR detection in complex matrices. The developed method is not only simple and rapid (with a detection time of 5 min) but also cost-effective, which is crucial for widespread application.


Subject(s)
Aptamers, Nucleotide , Berberine , Fluorometry , Medicine, Kampo , Berberine/chemistry , Berberine/analysis , Aptamers, Nucleotide/chemistry , Fluorometry/methods , SELEX Aptamer Technique/methods , Limit of Detection , Metal Nanoparticles/chemistry , Gold/chemistry , DNA, Single-Stranded/chemistry
15.
Talanta ; 278: 126470, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38996565

ABSTRACT

The Rubella virus (RUBV) is a highly contagious pathogen classified within the rubivirus genus, primarily infecting humans and transmitted via airborne routes. RUBV infection generally manifests as a mild illness reminiscent of measles. However, when affecting pregnant women, it can lead to a severe condition known as congenital rubella syndrome (CRS). Rubella infection could be also associated with joint pain, arthritis, and neurological disorders. Determination of Rubella immunity and diagnosis conventionally involve the Hemagglutination Inhibition (HI) test or the Enzyme-Linked Immunosorbent Assay (ELISA). In this study, we describe the selection and characterization of specific aptamers targeting the Rubella virus by using the process of Systematic Evolution of Ligands by EXponantial enrichment (SELEX). The Binding affinity studies have shown that the two aptamers; R-7 and R-5 display the lowest dissociation constants (Kd) of 6.58 nM and 19.05 nM, respectively. Then, R-7 aptamer was modified with a thiol group to enable its immobilization on screen-printed gold electrodes for the Rubella virus aptasensing. The label-free electrochemical detection was achieved using square wave voltammetry (SWV). The designed aptasensor has shown an excellent performance in detecting the Rubella virus within the range of 0.0005 ng/ml to 1000 ng/ml antigen and a limit of detection (LOD) of 0.00015 ng/ml. Selectivity studies were also performed against other viral antigens and serum proteins. Finally, the biosensor applicability was successfully demonstrated in spiked serum samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Rubella virus , Rubella virus/chemistry , Rubella virus/isolation & purification , Rubella virus/immunology , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , SELEX Aptamer Technique , Humans , Electrodes , Limit of Detection , Gold/chemistry
16.
Adv Sci (Weinh) ; 11(31): e2401386, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38894575

ABSTRACT

Since two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail. The incorporation of these materials into FET-based biosensors offers significant advantages, including low detection limits (LOD), real-time monitoring, label-free diagnosis, and exceptional selectivity. The review also highlights the diverse applications of these biosensors, ranging from conventional to wearable devices, underscoring the versatility of 2D material-based FET devices. Additionally, the review provides a comprehensive assessment of the limitations and challenges faced by these devices, along with insights into future prospects and advancements. Notably, a detailed comparison of FET-based biosensors is tabulated along with various other biosensing platforms and their working mechanisms. Ultimately, this review aims to stimulate further research and innovation in this field while educating the scientific community about the latest advancements in 2D materials-based biosensors.


Subject(s)
Biosensing Techniques , Point-of-Care Systems , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Transistors, Electronic , Graphite/chemistry , Equipment Design
17.
Biosens Bioelectron ; 261: 116469, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38850738

ABSTRACT

Despite high sensitivity of nanoparticle-on-mirror cavities, a crucial branch of plasmonic nanomaterials, complex preparation and readout processes limit their extensive application in biosensing. Alternatively, liquid metals (LMs) combining fluidity and excellent plasmonic characteristics have become potential candidates for constructing plasmonic nanostructures. Herein, we propose a microfluidic-integration strategy to construct LM-based immunoassay platform, enabling LM-based nanoplasmonic sensors to be used for point-of-care (POC) clinical biomarker detection. Flowable LM is introduced onto protein-coated Au nanoparticle monolayer to form a "mirror-on-nanoparticle" nanostructure, simplifying the fabrication process in the conventional nanoparticle-on-mirror cavities. When antibodies were captured by antigens coated on the Au nanoparticle monolayer, devices respond both thickness and refractive index change of biomolecular layers, outputting naked-eye readable signals with high sensitivity (limit of detection: ∼ 604 fM) and a broad dynamic range (6 orders). This new assay, which generates quantitative results in 30 min, allows for high-throughput, smartphone-based detection of SARS-CoV-2 antibodies against multiple variants in clinical serum or blood samples. These results establish an advanced avenue for POC testing with LM materials, and demonstrate its potential to facilitate diagnostics, surveillance and prevalence studies for various infectious diseases.


Subject(s)
Antibodies, Viral , Biosensing Techniques , COVID-19 , Gold , Metal Nanoparticles , Point-of-Care Systems , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/instrumentation , COVID-19/diagnosis , COVID-19/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoassay/instrumentation , Immunoassay/methods , Limit of Detection , Lab-On-A-Chip Devices , Equipment Design , Point-of-Care Testing , Microfluidic Analytical Techniques/instrumentation , Smartphone
18.
Talanta ; 277: 126317, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810383

ABSTRACT

In this study, we present a novel biomarker detection platform employing a modified S-tapered fiber coated with gold nanoparticle/graphene oxide (GNP/GO) for quantifying human epidermal growth factor receptor-2 (HER2) concentrations, using antibodies as sensing elements. The fabrication of this device involves implementing an in-situ layer-by-layer technique coupled with a chemical adsorption step to achieve the self-assembly of GNP, GO, and antibodies on the STF surface. The detection mechanism relies on monitoring the refractive index changes induced by the adsorption of HER2 onto the immobilized antibodies. For comparative analysis, both monoclonal antibody (mAb) and the novel nanobody (Nb) were employed in constructing the STF immunosensor, referred to as the mAb immunosensor and Nb immunosensor, respectively. Spectral analysis results highlight that the Nb immunosensor exhibits twice the sensitivity of the mAb immunosensor. This enhanced sensitivity is attributed to the small size, high antigen affinity, strong specificity, and structural stability of Nb. The Nb immunosensor demonstrated an impressive detection limit of 0.001 nM for HER2, surpassing the detection limit of the mAb immunosensor. These findings underscore the potential of the proposed Nb immunosensor as a promising and sensitive tool for HER2 detection, contributing to the diagnosis and prognosis of breast cancer. Furthermore, the simplicity of production and excellent optical performance position the Nb immunosensor as a prospective real-time biosensor with minimal cytotoxicity.


Subject(s)
Biosensing Techniques , Gold , Graphite , Metal Nanoparticles , Optical Fibers , Receptor, ErbB-2 , Single-Domain Antibodies , Receptor, ErbB-2/immunology , Receptor, ErbB-2/analysis , Humans , Biosensing Techniques/methods , Immunoassay/methods , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Immobilized/immunology , Antibodies, Immobilized/chemistry , Limit of Detection
19.
Sci Rep ; 14(1): 11928, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789508

ABSTRACT

Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components-such as aptamers, antibodies, or nucleic acids-with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102-106 cells mL-1, with a detection limit of 5 cells mL-1.


Subject(s)
Aniline Compounds , Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , Electrochemical Techniques , Fluorocarbon Polymers , Graphite , Receptor, ErbB-2 , Graphite/chemistry , Humans , Biosensing Techniques/methods , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Electrochemical Techniques/methods , Aniline Compounds/chemistry , Fluorocarbon Polymers/chemistry , Cell Line, Tumor , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/analysis , Female , Ferrosoferric Oxide/chemistry , Limit of Detection , Electrodes
20.
ACS Appl Bio Mater ; 7(3): 1579-1587, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38386014

ABSTRACT

In this study, a nanocomposite was synthesized by incorporating graphitic carbon nanosheets, carboxyl-functionalized multiwalled carbon nanotubes, and zirconium oxide nanoparticles. The resulting nanocomposite was utilized for the modification of a glassy carbon electrode. Subsequently, matrix metalloproteinase aptamer (AptMMP-9) was immobilized onto the electrode surface through the application of ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. Morphological characterization of the nanomaterials and the nanocomposite was performed using field-emission scanning electron microscopy (FESEM). The nanocomposite substantially increased the electroactive surface area by 205%, facilitating enhanced immobilization of AptMMP-9. The efficacy of the biosensor was evaluated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimal conditions, the fabricated sensor demonstrated a broad range of detection from 50 to 1250 pg/mL with an impressive lower limit of detection of 10.51 pg/mL. In addition, the aptasensor exhibited remarkable sensitivity, stability, excellent selectivity, reproducibility, and real-world applicability when tested with human serum and saliva samples. In summary, our developed aptasensor exhibits significant potential as an advanced biosensing tool for the point-of-care quantification of MMP-9, promising advancements in biomarker detection for practical applications.


Subject(s)
Aptamers, Nucleotide , Graphite , Nanocomposites , Nanotubes, Carbon , Nitrogen Compounds , Zirconium , Humans , Nanotubes, Carbon/chemistry , Matrix Metalloproteinase 9 , Electrochemical Techniques/methods , Saliva , Reproducibility of Results , Limit of Detection , Aptamers, Nucleotide/chemistry , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL