Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Bot ; 111(5): e16322, 2024 05.
Article in English | MEDLINE | ID: mdl-38641895

ABSTRACT

PREMISE: Functional traits reflect species' responses to environmental variation and the breadth of their ecological niches. Fagus grandifolia and Oreomunnea mexicana have restricted distribution in upper montane cloud forests (1700-2000 m a.s.l.) in Mexico. These species were introduced into plantings at lower elevations (1200-1600 m a.s.l.) that have climates predicted for montane forests in 2050 and 2070. The aim was to relate morphological leaf traits to the ecological niche structure of each species. METHODS: Leaf functional traits (leaf area, specific leaf area [SLA], thickness, and toughness) were analyzed in forests and plantings. Atmospheric circulation models and representative concentration pathways (RCPs: 2.6, 4.5, 8.5) were used to assess future climate conditions. Trait-niche relationships were analyzed by measuring the Mahalanobis distance (MD) from the forests and the plantings to the ecological niche centroid (ENC). RESULTS: For both species, leaf area and SLA were higher and toughness lower in plantings at lower elevation relative to those in higher-elevation forests, and thickness was similar. Leaf traits varied with distance from sites to the ENC. Forests and plantings have different environmental locations regarding the ENC, but forests are closer (MD 0.34-0.58) than plantings (MD 0.50-0.70) for both species. CONCLUSIONS: Elevation as a proxy for expected future climate conditions influenced the functional traits of both species, and trait patterns related to the structure of their ecological niches were consistent. The use of distances to the ENC is a promising approach to explore variability in species' functional traits and phenotypic responses in optimal versus marginal environmental conditions.


Subject(s)
Climate Change , Fagus , Forests , Plant Leaves , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Fagus/physiology , Fagus/anatomy & histology , Mexico , Ecosystem
2.
Ann Bot ; 129(6): 709-722, 2022 05 12.
Article in English | MEDLINE | ID: mdl-33245747

ABSTRACT

BACKGROUND AND AIMS: The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation. METHODS: We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern. KEY RESULTS: We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global pattern). CONCLUSIONS: Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.


Subject(s)
Forests , Nitrogen , Ecology , Phenotype , Plant Leaves , Poaceae
3.
Oecologia ; 194(1-2): 221-236, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32965523

ABSTRACT

Deciduous and evergreen trees are usually considered the main coexisting functional groups in seasonally dry tropical forests (SDTF). We compared leaf and stem traits of 22 woody species in the Brazilian Caatinga to investigate whether deciduous (DC) and evergreen (EV) species have divergent water-use strategies. Our hypothesis was that DC trees compensate for their short leaf longevity by being less conservative in water use and showing higher variation in the seasonal water potential after leaf shedding. Evergreen species should exhibit a highly conservative water use strategy, which reduces variations in seasonal water potential and the negative effects of desiccation. Our leaf dynamics results indicate that the crown area of DC trees is more sensitive to air and soil drought, whereas EV trees are only sensitive to soil drought. Deciduous species exhibit differences in a set of leaf traits confirming their acquisitive strategy, which contrasts with evergreen species. However, when stomatal traits are considered, we found that DC and EV have similar stomatal regulation strategies (partially isohydric). We also found divergent physiological strategies within DC. For high wood density DC, the xylem water potential (Ψxylem) continued to drop during the dry season. We also found a negative linear relationship between leaf life span (LL) and the transpiration rate per unit of hydraulic conductivity (Λ), indicating that species with high LL are less vulnerable to hydraulic conductivity loss than early-deciduous species. Collectively, our results indicate divergence in the physiology of deciduous species, which suggests that categorizing species based solely on their leaf phenology may be an oversimplification.


Subject(s)
Droughts , Tropical Climate , Brazil , Forests , Plant Leaves , Trees , Water , Wood
4.
AoB Plants ; 5: plt051, 2013.
Article in English | MEDLINE | ID: mdl-24379971

ABSTRACT

Tropical hyperseasonal savannas provide a rare example of a tropical climax community dominated by graminoid species. Species living in such savannas are frequently exposed to excess heat and light, in addition to drought and waterlogging, and must possess traits to avoid or tolerate these stress factors. Here we examine the contrasting heat and light stress adaptations of two dominant savanna sedges: Lagenocarpus guianensis, which is restricted to the sheltered forest edge, and Lagenocarpus rigidus, which extends from the forest edge to the open savanna. An ecotone extending from the forest edge to the open savanna was used to assess differences in a range of physiological traits (efficiency of photosystem II, cell membrane thermostability, stomatal conductance, leaf surface reflectance and canopy temperature depression) and a range of leaf functional traits (length : width ratio, specific leaf area and degree of folding). Lagenocarpus guianensis showed significantly less canopy temperature depression than L. rigidus, which may explain why this species was restricted to the forest edge. The range of leaf temperatures measured was within the thermal tolerance of L. guianensis and allowed photosystem II to function normally, at least within the cool forest edge. The ability of L. rigidus to extend into the open savanna was associated with an ability to decouple leaf temperature from ambient temperature combined with enhanced cell membrane thermostability. The high degree of canopy temperature depression seen in L. rigidus was not explained by enhanced stomatal conductance or leaf reflectance, but was consistent with a capacity to increase specific leaf area and reduce leaf length: width ratio in the open savanna. Plasticity in leaf functional traits and in cell membrane thermostability are key factors in the ability of this savanna sedge to survive abiotic stress.

SELECTION OF CITATIONS
SEARCH DETAIL