Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
1.
J Environ Sci (China) ; 133: 107-117, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37451781

ABSTRACT

Considerable efforts have been devoted to characterising the chemical components of vehicle exhaust. However, these components may not accurately reflect the contribution of vehicle exhaust to atmospheric reactivity because of the presence of species not accounted for ("missing species") given the limitations of analytical instruments. In this study, we improved the laser photolysis-laser-induced fluorescence (LP-LIF) technique and applied it to directly measure the total OH reactivity (TOR) in exhaust gas from light-duty gasoline vehicles in China. The TOR for China I to VI-a vehicles was 15.6, 16.3, 8.4, 2.6, 1.5, and 1.6 × 104 sec-1, respectively, reflecting a notable drop as emission standards were upgraded. The TOR was comparable between cold and warm starts. The missing OH reactivity (MOR) values for China I to IV vehicles were close to zero with a cold start but were much higher with a warm start. The variations in oxygenated volatile organic compounds (OVOCs) under different emission standards and for the two start conditions were similar to those of the MOR, indicating that OVOCs and the missing species may have similar production processes. Online measurement revealed that the duration of the stable driving stage was the primary factor leading to the production of OVOCs and missing species. Our findings underscore the importance of direct measurement of TOR from vehicle exhaust and highlight the necessity of adding OVOCs and other organic reactive gases in future upgrades of emission standards, such that the vehicular contribution to atmospheric reactivity can be more effectively controlled.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Gasoline/analysis , Vehicle Emissions/analysis , China , Gases , Motor Vehicles , Environmental Monitoring
2.
J Hazard Mater ; 458: 131914, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37379594

ABSTRACT

Ammonia emissions from motor vehicles have great effect on air pollution and human health in urban areas. Recently, many countries have focus on ammonia emission measurement and control technologies for light-duty gasoline vehicles (LDGVs). To analyze ammonia emission characteristics, three conventional LDGVs and one hybrid electric light-duty vehicle (HEV) were evaluated over different driving cycles. The average ammonia emission factor at 23℃ was 4.5 ± 1.6 mg/km over Worldwide harmonized light vehicles test cycle (WLTC). Most ammonia emissions mainly concentrated in low and medium speed sections at cold-start stage, which were related to rich burn conditions. The increasing ambient temperatures led to the decrease of ammonia emissions, but high load caused by extremely elevated ambient temperature led to obvious ammonia emissions. The ammonia formation is also related to three-way catalytic converter (TWC) temperatures, and underfloor TWC catalyst could eliminate ammonia partly. The ammonia emission from HEV, which are significant less than LDGV, corresponded to the engine working state. The large temperature difference in the catalysts caused by power source shifts were the main reason. Exploring the effects of various factors on the ammonia emission is beneficial for revealing the instinct formation conditions, providing theoretical support for the future regulations.

3.
J Environ Sci (China) ; 125: 266-276, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375913

ABSTRACT

An increasing divergence regarding fuel consumption (and/or CO2 emissions) between real-world and type-approval values for light-duty gasoline vehicles (LDGVs) has posed severe challenges to mitigating greenhouse gases (GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Light-duty Vehicle Test Cycle for Passenger cars (CLTC-P). We collected fuel consumption and CO2 emissions data of a LDGV under various conditions based on laboratory chassis dynamometer and on-road tests. Laboratory results showed that both standard test cycles and setting methods of road load affected fuel consumption slightly, with variations of less than 4%. Compared to the type-approval value, laboratory and on-road fuel consumption of the tested LDGV over the CLTC-P increased by 9% and 34% under the reference condition (i.e., air conditioning off, automatic stop and start (STT) on and two passengers). On-road measurement results indicated that fuel consumption under the low-speed phase of the CLTC-P increased by 12% due to the STT off, although only a 4% increase on average over the entire cycle. More fuel consumption increases (52%) were attributed to air conditioning usage and full passenger capacity. Strong correlations (R2 > 0.9) between relative fuel consumption and average speed were also identified. Under traffic congestion (average speed below 25 km/hr), fuel consumption was highly sensitive to changes in vehicle speed. Thus, we suggest that real-world driving conditions cannot be ignored when evaluating the fuel economy and GHGs reduction of LDGVs.


Subject(s)
Air Pollutants , Gasoline , Gasoline/analysis , Vehicle Emissions/analysis , Automobiles , Carbon Dioxide/analysis , Air Pollutants/analysis , Motor Vehicles
4.
Huan Jing Ke Xue ; 39(7): 3110-3117, 2018 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-29962133

ABSTRACT

Organic carbon (OC) and elemental carbon (EC) emission factors from 27 State 3-5 light-duty gasoline vehicles (LDGVs) were tested in this study using a CVS (Constant Volume Sampling) system on a dynamometer. The influences of start conditions, driving cycles, and fuel injection technologies on the OC and EC emissions were analyzed. The results show that the OC emission factors of the tested State 3 to 5 LDGVs were (2.09±1.03), (1.59±0.78), and (0.75±0.31) mg·km-1, respectively, and the EC emission factors were (1.98±1.42), (1.57±1.80), and (0.65±0.49) mg·km-1. Both OC and EC emissions significantly decreased with the promotion of emission standards. The OC/EC ratios were 1.54±0.92, 1.53±0.91, and 1.47±0.66, respectively. OC1, OC2, EC1, and EC2 were the most important carbonaceous components from LDGVs, accounting for 15%, 20.6%, 22.2%, and 21.7%, respectively. OC and EC emission factors under cold-start conditions were 1.4 and 1.8 times those under hot-start conditions. OC and EC emission factors for highway cycles were 2 and 4 times those for urban cycles. OC emission factors from GDI (Gasoline Direct Injection) engines were close to those from PFI (Port Fuel Injection) engines. However, their EC emission factors were 1.7 times those from PFI engines. With the increasing popularity of GDI engines in LDGV fleets in China, the EC emissions from these engines should be paid more attention in the future.

5.
Huan Jing Ke Xue ; 38(6): 2294-2300, 2017 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-29965346

ABSTRACT

Gaseous emissions from 25 State 2-5 light-duty gasoline vehicles were tested by Vehicle Mass Analysis System (VMAS) and CVS (Constant Volume Sampling) system, respectively. The correlations of emission factors of tested vehicles measured by these 2 methods were analyzed. The results showed that emission factors of light-duty gasoline vehicle had a decreasing trend with the promotion of emission standard. There were some high-emitting vehicles in the fleet of tested State 2 and State 3 vehicles, but fewer in State 4 or Stated 5 vehicle fleet. The correlations of the emission factors measured by the 2 methods deteriorated with the promotion of emission standard. The relative bias of CO and HC+NOx emission factors measured by the 2 methods reached 197% and 177%, respectively. The correlation coefficient of emission factors of higher-emitting vehicles was 0.75-0.85, while that of lower-emitting vehicles was only 0.46. If tighter emission standard of in-use light-duty gasoline vehicle was adopted, the false positive rate of measurement results by VMAS would rise significantly. In summary, VMAS method is hard to be applied in the emission measurements of light-duty gasoline vehicles with stricter emissions standard. It is necessary to conduct more studies on sophisticated in-use vehicle measurement system.

6.
Sci Total Environ ; 547: 422-428, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26799329

ABSTRACT

Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Soot/analysis , Vehicle Emissions/analysis , Air Pollutants/analysis , Atmosphere , Gasoline , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL