Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 132156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729480

ABSTRACT

Reasonable design of non-noble metal catalysts with hollow open structure for hydrodeoxygenation (HDO) of lignin derivatives to value-added chemicals is of great significance but challenging. Herein, a novel MOF-derived multilayer hollow sphere coated nickel­tungsten bimetallic catalyst (Ni2-WOx@CN-700) was fabricated via by confined pyrolysis strategy using bimetallic MOFs as a self-sacrificial template, which exhibits robust activity for the typical model HDO of vanillin to 2-methoxy-4-methylphenol (Yield of 100 % at 140 °C for no less than 10 cycles). The characterizations revealed that WOx facilitated the dispersion of Ni nanoparticles and adjusted the acidic capacity of the catalyst through the formed Ni-WOx heterojunction. Density functional theory (DFT) calculations confirms that WOx species enhanced the electron-rich nature of the active sites, while the adsorption energies of H2 and vanillin on Ni-WOx decreased from -0.572 eV and - 0.622 eV on Ni to -3.969 eV and - 4.922 eV, respectively. These results further indicated that the high activity of Ni2-WOx@CN-700 was attributed to the Ni-WOx heterojunction. Based on the characterizations and the thermodynamic calculations, the reaction mechanism was proposed. In addition, the catalyst shows good substrate universality, which enables its good commercial application prospect.


Subject(s)
Benzaldehydes , Nickel , Catalysis , Nickel/chemistry , Benzaldehydes/chemistry , Tungsten/chemistry , Lignin/chemistry , Thermodynamics , Metal-Organic Frameworks/chemistry , Adsorption , Density Functional Theory
2.
Int J Biol Macromol ; 264(Pt 1): 130390, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403228

ABSTRACT

The process of lignin extraction often involves intricate chemical transformations, influencing its potential for high-value utilization. By investigating the process of lignin derivatives extraction from hemp fibers using supercritical CO2, ethanol, and water, we identified the relationship between the chemical structure of lignin derivatives and temperature. This discovery contributes to controlling the chemical structure of lignin derivatives through temperature modulation. We observed that lignin derivatives extracted within the temperature range of 100-120 °C exhibited the lowest average molecular weight and polydispersity index, presenting a disordered microstructure with the highest hydroxyl content. Lignin derivatives extracted between 140 and 160 °C showed an increase in average molecular weight and polydispersity index, decreased hydroxyl content, and a gradual transformation of microstructure into spherical particles. At 180 °C, the average molecular weight and polydispersity index of lignin derivatives decreased, the microstructure of lignin derivatives showed fewer spherical particles, while its hydroxyl content exhibited a partial recovery. Chemical analysis revealed a lower degree of condensation in lignin derivatives at 100-120 °C. Between 120 and 160 °C, the degree of condensation increased. At 180 °C, extensive degradation occurred in lignin derivatives. This research advances innovative techniques for lignin derivative separation, contributing to their utilization in higher-value applications.


Subject(s)
Cannabis , Lignin , Lignin/chemistry , Ethanol/chemistry , Water/chemistry , Carbon Dioxide , Temperature
3.
J Hazard Mater ; 467: 133695, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38341895

ABSTRACT

As a growing concern in aqueous systems, micro- and nano-plastics, especially nanoplastics (NPs), have been widely detected in the environment and organisms, posing a potential threat to ecosystems and human health. Hydrophobic deep eutectic solvents (HDESs) have emerged as environmentally friendly solvents that have shown promise for extracting pollutants from water, either for detection or removal purposes. Herein, we investigated the extraction of polystyrene (PS) and polyethylene terephthalate (PET) NPs from aqueous solution using lignin based HDESs as sustainable solvents. Rapid extraction of both PET and PS NPs was observed with the high extraction efficiency achieved (> 95%). The extraction capacities for PET and PS could reach up to 525.877 mg/mL and 183.520 mg/mL, respectively, by the Thymol-2,6-dimethoxyphenol 1:2 HDES. Moreover, the extraction mechanism was studied using various techniques including Fourier-transform infrared analysis, contact angle measurements, molecular dynamics simulation, kinetics, and isotherm studies. This work lays a foundational basis for the future development of innovative HDES-based technologies in the detection and remediation of NPs as part of the grand challenge of plastic pollution.

4.
Small ; 20(29): e2309821, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366125

ABSTRACT

Hydrodeoxygenation (HDO) of lignin derivatives at room-temperature (RT) is still of challenge due to the lack of satisfactory activity reported in previous literature. Here, it is successfully designed a Pd/UiO-66-(COOH)2 catalyst by using UiO-66-(COOH)2 as the support with uncoordinated carboxyl groups. This catalyst, featuring a moderate Pd loading, exhibited exceptional activity in RT HDO of vanillin (VAN, a typical model lignin derivative) to 2-methoxyl-4-methylpheonol (MMP), and >99% VAN conversion with >99% MMP yield is achieved, which is the first metal-organic framework (MOF)-based catalyst realizing the goal of RT HDO of lignin derivatives, surpassing previous reports in the literature. Detailed investigations reveal a linear relationship between the amount of uncoordinated carboxyl group and MMP yield. These uncoordinated carboxyl groups accelerate the conversion of intermediate such as vanillyl alcohol (VAL), ultimately leading to a higher yield of MMP over Pd/UiO-66-(COOH)2 catalyst. Furthermore, Pd/UiO-66-(COOH)2 catalyst also exhibits exceptional reusability and excellent substrate generality, highlighting its promising potential for further biomass utilization.

5.
ACS Appl Mater Interfaces ; 15(28): 33654-33664, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37429817

ABSTRACT

Selective deoxygenation of chemicals using non-noble metal-based catalysts poses a significant challenge toward upgrading biomass-derived oxygenates into advanced fuels and fine chemicals. Herein, we report a bifunctional core-shell catalyst (Ni@Al3-mSiO2) consisting of Ni nanoparticles closely encapsulated by the Al-doped mesoporous silica shell that achieves 100% vanillin conversion and >99% yield of 2-methoxy-4-methylphenol under 1 MPa H2 at 130 °C in water. Due to the unique mesoporous core-shell structure, no significant decrease in catalytic activity was observed after 10 recycles. Furthermore, incorporating Al atoms into the silica shell significantly increased the number of acidic sites. Density functional theory calculations reveal the reaction pathway of the vanillin hydrodeoxygenation process and uncover the intrinsic influence of the Al sites. This work not only provides an efficient and cost-effective bifunctional hydrodeoxygenation catalyst but also offers a new synthetic protocol to rationally design promising non-noble metal catalysts for biomass valorization or other widespread applications.

6.
Environ Int ; 170: 107582, 2022 12.
Article in English | MEDLINE | ID: mdl-36265357

ABSTRACT

Field-based sampling can provide more accurate evaluation than MODIS in regional biomass burning (BB) emissions given the limitations of MODIS on unresolved fires. Polyurethane foam-based passive air samplers (PUF-PASs) are a promising tool for collecting atmospheric monosaccharides. Here, we deployed PUF-PASs to monitor monosaccharides and other BB-related biomarkers and presented a dataset of 31 atmospheric BB-related biomarkers in the Indo-China Peninsula (ICP) and Southwest China. The peak concentrations of monosaccharides in the ICP occurred before monsoon season. The highest concentrations were in the eastern Mekong plain, while the lowest were along the eastern coast. BB-related biomarkers displayed elevated concentrations after April, particularly in the monsoon season; however, fewer active fires were recorded by MODIS. This revealed the importance of MODIS unresolved fires (e.g., indoor biofuel combustion, small-scale BB incidents, and charcoal fires) to the regional atmosphere. The PAS derived levoglucosan concentrations indicated that, with the inclusion of MODIS unresolved fires, the estimated top-down emissions of PM (4194-4974 Gg/yr), OC (1234-1719 Gg/yr) and EC (52-384 Gg/yr) would be higher than previous bottom-up estimations in the ICP. Future studies on these MODIS unresolved fires and regional monitoring data of BB are vital for improving the modeling of regional BB emissions.


Subject(s)
China
7.
Biotechnol Biofuels ; 14(1): 11, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413621

ABSTRACT

BACKGROUND: Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy-co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440-for the first time, which simultaneously improved both cell biomass and PHA production. RESULTS: Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4-16.1% and PHA content by 29.0-63.2%, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4-4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8-3.5%. The 1H-13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid ß-oxidation, and PHA biosynthesis. CONCLUSIONS: This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.

8.
Bioresour Technol ; 290: 121790, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31350071

ABSTRACT

Lignin based biopolymer (value added products) production is the most promising technology in the perspective of lignin valorization and sustainable development. Valorization of lignin gain the potentials to produce biopolymers such as polyhydroxyalkanoates, polyhydroxybutyrates, polyurethane etc. However, lignin valorization processes still needs development due to the recalcitrant nature of lignin which restricts its potential to produce valuable products. Many novel extraction strategies have been developed to fragment the lignin structure and make ease the recovery of valuable products. Achieving in depth insights on lignin characteristics and structure will help to understand the metabolic and catalytic degradative pathways needed for lignin valorization. In the view of multipurpose characteristics of lignin for biopolymer production, this review will spot light the potential applications of lignin and lignin based derivatives on biopolymer production, various lignin separation technologies, lignin depolymerization process, biopolymers production strategies and the challenges in lignin valorization will be addressed and discussed.


Subject(s)
Lignin , Polyhydroxyalkanoates , Catalysis , Polymerization
9.
Environ Technol ; 40(24): 3240-3251, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29683398

ABSTRACT

Fractionation of phenolic compounds in thermomechanical pulp mills was performed with a coupling of a prior treatment realized by flotation and a ceramic membrane process. Two lines of membranes filtration were tested. After a common 150 kDa clarification, 1 kDa filtration was performed with or without previous 5 kDa filtration. Flotation was shown to be inevitable to retain lipophilic compounds which cause severe membrane fouling. 150 kDa permeate flux was 20% higher when process water was firstly floated and was around 260 L h-1 m-2. 1 kDa membrane was fouled with 31% of irreversible fouling without previous 5 kDa filtration and phenolic compounds purity reached only 26% in this 1 kDa permeate. Phenolic compounds as lignin-like substances which might be attached to hemicelluloses were recovered in 5 kDa retentate. Retentate of 1 kDa might contain a major fraction of lignin derivatives with molecular weights around 1 kDa free or linked with phenolic acids. Permeate of 1 kDa contained 14% of phenolic compounds such as lignans and free phenolic acids purified at 50%.


Subject(s)
Water Purification , Water , Chemical Fractionation , Filtration , Membranes, Artificial , Polyphenols , Wastewater
10.
Chem Biodivers ; 14(9)2017 Sep.
Article in English | MEDLINE | ID: mdl-28657207

ABSTRACT

GC/MS of headspace solid phase micro extraction (HS-SPME) and solvent extractives along with targeted HPLC-DAD of Polish fir (Abies alba Mill.) honeydew honey (FHH), were used to determine the chemical profiles and potential markers of botanical origin. Additionally, typical physical-chemical parameters were also assigned. The values determined for FHH were: conductivity (1.2 mS/cm), water content (16.7 g/100 g), pH (4.5), and CIE chromaticity coordinates (L* = 48.4, a* = 20.6, b* = 69.7, C* = 72.9, and h° = 73.5). FHH contained moderate-high total phenolic content (533.2 mg GAE/kg) and antioxidant activity (1.1 mmol TEAC/kg) and (3.2 mmol Fe2+ /kg) in DPPH and FRAP assays. The chemical profiles were dominated by source plant-originated benzene derivatives: 3,4-dihydroxybenzoic acid (up to 8.7 mg/kg, HPLC/honey solution), methyl syringate (up to 14.5%, GC/solvent extracts) or benzaldehyde (up to 43.7%, GC/headspace). Other markers were terpenes including norisoprenoid (4-hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, up to 20.3%, GC/solvent extracts) and monoterpenes, mainly linalool derivatives (up to 49%, GC/headspace) as well as borneol (up to 5.9%, GC/headspace). The application of various techniques allowed comprehensive characterisation of FHH. 4-Hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, coniferyl alcohol, borneol, and benzaldehyde were first time proposed for FHH screening. Protocatechuic acid may be a potential marker of FFH regardless of the geographical origin.


Subject(s)
Abies/chemistry , Antioxidants/analysis , Benzene Derivatives/analysis , Plant Exudates/chemistry , Terpenes/analysis , Volatile Organic Compounds/analysis , Antioxidants/pharmacology , Benzene Derivatives/pharmacology , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Plant Exudates/pharmacology , Poland , Solid Phase Microextraction , Terpenes/pharmacology , Volatile Organic Compounds/pharmacology
11.
Int J Biol Macromol ; 93(Pt A): 296-313, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27521847

ABSTRACT

Lignin and lignin derivatives biopolymers have several properties, such as high thermal stability, antioxidant, biodegradability, antimicrobial actions, adhesive properties, etc., and thus they can be extensively used in wide range of areas. Although human history mostly depend on the biopolymers, however derivatives of lignin such as sulfonate, phenolic, organosolv, Kraft and sodium sulfonate lignin have good mechanical and physicochemical properties. Well-designed materials such as coatings and paints, manufacturing of plastics and resins, for rubber packaging, for fuel production etc., can be obtained by the functionalizations of chemically modified lignin. Considering multi purposes properties of the lignin and lignin derivatives and extensive industrial applications of derivatives, this review sheds a light on lignin derivatives based materials with their prospective applications. All the technical scientific issues have been addressed highlighting the recent advancement.


Subject(s)
Lignin/chemistry , Humans , Lignin/chemical synthesis , Proteins/chemistry , Starch/chemistry
12.
Bioresour Technol ; 173: 104-109, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25291627

ABSTRACT

Amphipathic lignin derivatives (A-LDs) were already demonstrated to improve enzymatic saccharification of lignocellulose. Based on this knowledge, two kinds of A-LDs prepared from black liquor of soda pulping of Japanese cedar were applied to a fed-batch simultaneous saccharification and fermentation (SSF) process for unbleached soda pulp of Japanese cedar to produce bioethanol. Both lignin derivatives slightly accelerated yeast fermentation of glucose but not inhibited it. In addition, ethanol yields based on the theoretical maximum ethanol production in the fed-batch SSF process was increased from 49% without A-LDs to 64% in the presence of A-LDs.


Subject(s)
Bioreactors/microbiology , Ethanol/metabolism , Lignin/chemistry , Refuse Disposal/methods , Saccharomyces cerevisiae/metabolism , Wood/chemistry , Wood/microbiology , Biodegradation, Environmental , Carbohydrate Metabolism/physiology , Cellulase/chemistry , Ethanol/isolation & purification , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL