Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Sci Food Agric ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054895

ABSTRACT

BACKGROUND: Nitrite salts are frequently utilized as meat additives to improve the quality and safety of processed meat products. However, these salts are associated with the formation of carcinogenic nitrosamines. Given its potential regulating effect on the formation of intermediate molecules, such as nitric oxide, it is hypothesized that carnosine, a meat constituent possessing antioxidant activity and other multiple health benefits, could dampen the formation of nitrosamines. The current study therefore assessed the effect of carnosine on nitrosamine formation in both a monophasic aqueous system and a biphasic water-lipid system simulating a gastric environment. RESULTS: In the monophasic system, relatively high levels of carnosine were required to significantly reduce the formation of different species of nitrosamine compared with the control (no carnosine). While higher levels of some nitrosamines were generated in both phases of the biphasic system, low carnosine concentrations significantly suppressed nitrosamine formation in the aqueous phase, while in the lipid phase, intermediate levels of carnosine were required. At higher carnosine levels, further reduction in nitrosamines was observed in the lipid phase. CONCLUSIONS: This study demonstrates the capacity of carnosine to reduce nitrosamine formation in aqueous and lipid environments and suggests the potential of dietary carnosine to lower the risks associated with the consumption of processed meat products. © 2024 His Majesty the King in Right of Canada and The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.

2.
Front Cell Infect Microbiol ; 12: 907890, 2022.
Article in English | MEDLINE | ID: mdl-35873160

ABSTRACT

Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic-palmitic-stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the "genetic lipid signature" for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-ß versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host.


Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Mycobacterium tuberculosis , BCG Vaccine , Cholesterol/metabolism , Cytokines/metabolism , Humans , Macrophages/microbiology , Oxidation-Reduction
3.
J Neuroimmunol ; 356: 577580, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33933819

ABSTRACT

We analysed the effect of adding cholesterol to glycolipid antigens on antibody activity with enzyme-linked immunosorbent assay in 123 subjects consisting of 96 patients with Guillain-Barré syndrome, 25 Miller Fisher syndrome, and two Bickerstaff brainstem encephalitis. The use of cholesterol-added GM1 antigens increased anti-GM1 activity in 11 out of 23 anti-GM1-positive patients and resulted in six out of 100 anti-GM1-negative patients becoming anti-GM1-positive. Enhancement of anti-GM1 activity by cholesterol addition was significantly associated with antecedent gastrointestinal infection. The use of cholesterol-added glycolipid antigens can increase the detection rate of anti-glycolipid antibodies and accurately evaluate the anti-glycolipid antibody activity in vivo.


Subject(s)
Autoantibodies/blood , Cholesterol/administration & dosage , G(M1) Ganglioside/blood , Glycolipids/blood , Guillain-Barre Syndrome/blood , Miller Fisher Syndrome/blood , Encephalitis/blood , Encephalitis/drug therapy , Enzyme-Linked Immunosorbent Assay/methods , Female , Guillain-Barre Syndrome/drug therapy , Humans , Male , Miller Fisher Syndrome/drug therapy , Retrospective Studies
4.
J Biol Chem ; 295(35): 12426-12436, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32641492

ABSTRACT

Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.


Subject(s)
Hepacivirus/enzymology , Lipid Metabolism , Membrane Lipids/metabolism , Nerve Tissue Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Proteolysis , RNA, Viral/biosynthesis , Serine Proteases/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line, Tumor , Hepacivirus/genetics , Humans , Membrane Lipids/genetics , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , RNA, Viral/genetics , Serine Proteases/genetics , Viral Nonstructural Proteins/genetics
5.
Genes (Basel) ; 10(12)2019 12 03.
Article in English | MEDLINE | ID: mdl-31816972

ABSTRACT

Lipid species are critical components of eukaryotic membranes. They play key roles in many biological processes such as signal transduction, cell homeostasis, and energy storage. Investigations of lipid-environment interactions, in addition to the lipid and environment main effects, have important implications in understanding the lipid metabolism and related changes in phenotype. In this study, we developed a novel penalized variable selection method to identify important lipid-environment interactions in a longitudinal lipidomics study. An efficient Newton-Raphson based algorithm was proposed within the generalized estimating equation (GEE) framework. We conducted extensive simulation studies to demonstrate the superior performance of our method over alternatives, in terms of both identification accuracy and prediction performance. As weight control via dietary calorie restriction and exercise has been demonstrated to prevent cancer in a variety of studies, analysis of the high-dimensional lipid datasets collected using 60 mice from the skin cancer prevention study identified meaningful markers that provide fresh insight into the underlying mechanism of cancer preventive effects.


Subject(s)
Algorithms , Biomarkers, Tumor , Gene-Environment Interaction , Lipid Metabolism/genetics , Lipids/genetics , Models, Biological , Skin Neoplasms , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Lipidomics , Mice , Signal Transduction/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
6.
Methods Mol Biol ; 2003: 253-279, 2019.
Article in English | MEDLINE | ID: mdl-31218622

ABSTRACT

Circular-dichroism (CD) spectroscopy is a powerful tool for the secondary-structure analysis of proteins. The structural information obtained by CD does not have atomic-level resolution (unlike X-ray crystallography and NMR spectroscopy), but it has the great advantage of being applicable to both nonnative and native proteins in a wide range of solution conditions containing lipids and detergents. The development of synchrotron-radiation CD (SRCD) instruments has greatly expanded the utility of this method by extending the spectra to the vacuum-ultraviolet region below 190 nm and producing information that is unobtainable by conventional CD instruments. Combining SRCD data with bioinformatics provides new insight into the conformational changes of proteins in a membrane environment.


Subject(s)
Lipids/chemistry , Proteins/chemistry , Amino Acid Sequence , Circular Dichroism/methods , Crystallography, X-Ray/methods , Detergents/chemistry , Humans , Magnetic Resonance Spectroscopy/methods , Protein Structure, Secondary , Protein Structure, Tertiary , Synchrotrons , Vacuum
7.
Article in English | MEDLINE | ID: mdl-30687646

ABSTRACT

The capacity of Mycobacterium tuberculosis (Mtb) to sense, respond and adapt to a variable and hostile environment within the host makes it one of the most successful human pathogens. During different stages of infection, Mtb is surrounded by a plethora of lipid molecules and current evidence points out the relevance of fatty acids during the infectious process. In this study, we have compared the transcriptional response of Mtb to hypoxia in cultures supplemented with a mix of even long-chain fatty acids or dextrose as main carbon sources. Using RNA sequencing, we have identified differential expressed genes in early and late hypoxia, defined according to the in vitro Wayne and Hayes model, and compared the results with the exponential phase of growth in both carbon sources. We show that the number of genes over-expressed in the lipid medium was quite low in both, early and late hypoxia, relative to conditions including dextrose, with the exception of transcripts of stable and non-coding RNAs, which were more expressed in the fatty acid medium. We found that sigB and sigE were over-expressed in the early phase of hypoxia, confirming their pivotal role in early adaptation to low oxygen concentration independently of the carbon source. A drastic contrast was found with the transcriptional regulatory factors at early hypoxia. Only 2 transcriptional factors were over-expressed in early hypoxia in the lipid medium compared to 37 that were over-expressed in the dextrose medium. Instead of Rv0081, known to be the central regulator of hypoxia in dextrose, Rv2745c (ClgR), seems to play a main role in hypoxia in the fatty acid medium. The low level of genes associated to the stress-response during their adaptation to hypoxia in fatty acids, suggests that this lipid environment makes hypoxia a less stressful condition for the tubercle bacilli. Taken all together, these results indicate that the presence of lipid molecules shapes the metabolic response of Mtb to an adaptive state for different stresses within the host, including hypoxia. This fact could explain the success of Mtb to establish long-term survival during latent infection.


Subject(s)
Anaerobiosis , Environmental Exposure , Fatty Acids/metabolism , Mycobacterium tuberculosis/physiology , Stress, Physiological , Adaptation, Physiological , Carbon/metabolism , Culture Media/chemistry , Gene Expression Profiling , Glucose/metabolism , Mycobacterium tuberculosis/genetics , Sequence Analysis, RNA
8.
Biophys Rev ; 10(2): 307-316, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29256118

ABSTRACT

Cryoelectron microscopy (cryo-EM) in association with a single particle analysis method (SPA) is now a promising tool to determine the structures of proteins and their macromolecular complexes. The development of direct electron detection cameras and image processing technologies has allowed the structures of many important proteins to be solved at near-atomic resolution or, in some cases, at atomic resolution, by overcoming difficulties in crystallization or low yield of protein production. In the case of membrane-integrated proteins, the proteins were traditionally solubilized and stabilized with various kind of detergents. However, the density of detergent micelles diminished the contrast of membrane proteins in cryo-EM studies and made it difficult to obtain high-resolution structures. To improve the resolution of membrane protein structures in cryo-EM studies, major improvements have been made both in sample preparation techniques and in hardware and software developments. The focus of our review is on improvements which have been made in the various techniques for sample preparation for cryo-EM studies, with a specific interest placed on techniques for mimicking the lipid environment of membrane proteins.

9.
J Biol Chem ; 290(32): 19853-62, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26100634

ABSTRACT

Maculatin 1.1 (Mac1) is an antimicrobial peptide from the skin of Australian tree frogs and is known to possess selectivity toward Gram-positive bacteria. Although Mac1 has membrane disrupting activity, it is not known how Mac1 selectively targets Gram-positive over Gram-negative bacteria. The interaction of Mac1 with Escherichia coli, Staphylococcus aureus, and human red blood cells (hRBC) and with their mimetic model membranes is here reported. The peptide showed a 16-fold greater growth inhibition activity against S. aureus (4 µM) than against E. coli (64 µM) and an intermediate cytotoxicity against hRBC (30 µM). Surprisingly, Sytox Green uptake monitored by flow cytometry showed that Mac1 compromised both bacterial membranes with similar efficiency at ∼20-fold lower concentration than the reported minimum inhibition concentration against S. aureus. Mac1 also reduced the negative potential of S. aureus and E. coli membrane with similar efficacy. Furthermore, liposomes mimicking the cell membrane of S. aureus (POPG/TOCL) and E. coli (POPE/POPG) were lysed at similar concentrations, whereas hRBC-like vesicles (POPC/SM/Chol) remained mostly intact in the presence of Mac1. Remarkably, when POPG/TOCL and POPE/POPG liposomes were co-incubated, Mac1 did not induce leakage from POPE/POPG liposomes, suggesting a preference toward POPG/TOCL membranes that was supported by surface plasma resonance assays. Interestingly, circular dichroism spectroscopy showed a similar helical conformation in the presence of the anionic liposomes but not the hRBC mimics. Overall, the study showed that Mac1 disrupts bacterial membranes in a similar fashion before cell death events and would preferentially target S. aureus over E. coli or hRBC membranes.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Erythrocytes/drug effects , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Amphibian Proteins/isolation & purification , Animals , Antimicrobial Cationic Peptides/isolation & purification , Anura/metabolism , Cardiolipins/chemistry , Cell Membrane/chemistry , Cholesterol/chemistry , Dose-Response Relationship, Drug , Erythrocytes/chemistry , Erythrocytes/cytology , Escherichia coli/chemistry , Escherichia coli/cytology , Hemolysis/drug effects , Humans , Liposomes/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Species Specificity , Sphingomyelins/chemistry , Staphylococcus aureus/chemistry , Staphylococcus aureus/cytology
10.
Biochim Biophys Acta ; 1851(5): 629-40, 2015 May.
Article in English | MEDLINE | ID: mdl-25687304

ABSTRACT

Five yeast enzymes synthesizing various glycerophospholipids belong to the CDP-alcohol phosphatidyltransferase (CAPT) superfamily. They only share the so-called CAPT motif, which forms the active site of all these enzymes. Bioinformatic tools predict the CAPT motif of phosphatidylinositol synthase Pis1 as either ER luminal or cytosolic. To investigate the membrane topology of Pis1, unique cysteine residues were introduced into either native or a Cys-free form of Pis1 and their accessibility to the small, membrane permeating alkylating reagent N-ethylmaleimide (NEM) and mass tagged, non-permeating maleimides, in the presence and absence of non-denaturing detergents, was monitored. The results clearly point to a cytosolic location of the CAPT motif. Pis1 is highly sensitive to non-denaturing detergent, and low concentrations (0.05%) of dodecylmaltoside change the accessibility of single substituted Cys in the active site of an otherwise cysteine free version of Pis1. Slightly higher detergent concentrations inactivate the enzyme. Removal of the ER retrieval sequence from (wt) Pis1 enhances its activity, again suggesting an influence of the lipid environment. The central 84% of the Pis1 sequence can be aligned and fitted onto the 6 transmembrane helices of two recently crystallized archaeal members of the CAPT family. Results delineate the accessibility of different parts of Pis1 in their natural context and allow to critically evaluate the performance of different cysteine accessibility methods. Overall the results show that cytosolically made inositol and CDP-diacylglycerol can access the active site of the yeast PI synthase Pis1 from the cytosolic side and that Pis1 structure is strongly affected by mild detergents.


Subject(s)
CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/metabolism , Cytosol/enzymology , Saccharomyces cerevisiae/enzymology , Transferases (Other Substituted Phosphate Groups)/metabolism , Algorithms , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/chemistry , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/genetics , Catalytic Domain , Computational Biology , Cysteine , Cytidine Diphosphate Diglycerides/metabolism , Detergents/chemistry , Enzyme Activation , Enzyme Stability , Inositol/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Protein Denaturation , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Structure-Activity Relationship , Substrate Specificity , Time Factors , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL