Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Stud Health Technol Inform ; 316: 21-22, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39176664

ABSTRACT

The increased utilization of continuous glucose monitors (CGM) and smart insulin pens (SIP) among people with type 2 diabetes generates significant health data. This study explored possible patterns in long term CGM and SIP data.


Subject(s)
Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 2 , Insulin Infusion Systems , Insulin , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Insulin/therapeutic use , Blood Glucose/analysis , Hypoglycemic Agents/therapeutic use
2.
Sci Total Environ ; 950: 175436, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39128525

ABSTRACT

Understanding the impacts of extreme weather events on freshwater ecosystems is imperative during a time when a multitude of challenges compromises these environments' health. Exploring how such events affect macroinvertebrate communities in rivers sheds light on the resilience of freshwater ecosystems, which is essential for human well-being and biodiversity conservation. In this study, long-term time series of benthic macroinvertebrate communities from four sites along three freshwater streams within the Rhine-Main-Observatory Long-Term Ecological Research site in Germany were analyzed. Each of them was sampled annually over a span of ~20 years to assess the impacts of extreme weather events (floods, droughts, and extreme heat) on macroinvertebrate communities. The findings reveal that the effects of extreme events are site-specific, suggesting that the impacts of an extreme event can vary based on several potential factors, including the life history traits of the organisms within the community and, among others, the hydrography of the site. Moreover, the analysis highlights that the cumulative impact of these events over time is more significant than the impact of a single event's magnitude, while following distinct temporal dynamics. This underscores the importance of considering both the temporal dynamics and the biological characteristics of communities when evaluating the consequences of extreme weather events on biodiversity, illustrating that the resilience of freshwater ecosystems and their biodiversity under such conditions depends on a complex interplay of factors rather than the severity of individual events.


Subject(s)
Biodiversity , Extreme Weather , Invertebrates , Animals , Invertebrates/physiology , Germany , Environmental Monitoring , Ecosystem , Rivers , Fresh Water , Aquatic Organisms
3.
Glob Chang Biol ; 30(7): e17400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007244

ABSTRACT

Species exploiting seasonal environments must alter timings of key life-history events in response to large-scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among-species variation in long-term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life-history variables. Accordingly, we fitted multi-quantile regressions to 59 years of multi-species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life-history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long-distance and short-distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology-abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life-histories showed systematically differing phenological changes over six decades contextualised by large-scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co-occurrences.


Subject(s)
Animal Migration , Birds , Seasons , Animals , Animal Migration/physiology , Birds/physiology , Scotland , Ecosystem , Life History Traits , Climate Change , Diet
4.
Biology (Basel) ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056687

ABSTRACT

Considering the role of phytoplankton in the functioning and health of marine systems, it is important to characterize its responses to a changing environment. The central Adriatic Sea, as a generally oligotrophic area, is a suitable environment to distinguish between regular fluctuations in phytoplankton and those caused by anthropogenic or climatic influences. This study provides a long-term perspective of phytoplankton assemblage in the central eastern Adriatic Sea, with 14 years of continuous time series data collected at two coastal and two offshore stations. The predominant phytoplankton groups were diatoms and phytoflagellates, but their proportion varied depending on the vicinity of the coast, as evidenced also by the distribution of chlorophyll a. In the coastal environment, the phytoplankton biomass was substantially higher, with a higher proportion of microphytoplankton, while small phytoplankton accounted for the majority of biomass in the offshore area. In addition, a decreasing trend in diatom abundance was observed in the coastal waters, while such trend was not so evident in the offshore area. Using a neural gas algorithm, five clusters were defined based on the contribution of the major groups. The observed increase in diversity, especially in dinoflagellates, which outnumber diatom taxa, could be a possible adaptation of dinoflagellates to the increased natural solar radiation in summer and the increased sea surface temperature.

5.
Mar Environ Res ; 199: 106618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959782

ABSTRACT

The Mediterranean is recognized as a climate change hotspot, with ongoing warming anticipated to impact its habitats and their associated fish fauna. Among these habitats, the seagrass Posidonia oceanica stands out as a foundational species, critical for the stability of coastal fish communities. However, our understanding of climate change consequences on P. oceanica associated fish fauna to date remains limited in part due to a lack of long-term data. This study aimed to highlight potential climate change risks to fish species associated with Posidonia, integrating data on species' thermal envelopes with their habitat and depth preferences into a climate change risk index. Specifically, 9 species, including three pipefish and several wrasse species of the genus Symphodus, emerged as being at higher potential risk from climatic change. A historical time series from Palma Bay (Balearic Islands, Spain), spanning 45 years and providing clear evidence of warming, was employed to evaluate trends in species abundance and occurrence in relation to their relative climate risk score. While certain high-risk species like Symphodus cinereus and Diplodus annularis showed an increase in abundance over time, others, such as the pipefish Syngnathus acus, Syngnathus typhle and Nerophis maculatus experienced declines. The absence of observed declines in some high-risk species could be attributed to several factors, such as acclimation, adaptation, or unmet response thresholds. However, this does not rule out the potential for future changes in these species. Factors such as increased nutrient influx due to growing human populations and changes in fishing regulations may also have contributed to the observed trends. These findings underscore the intricate interplay of environmental and anthropogenic factors and accentuate the pressing need for sustained, long-term data acquisition to fathom the implications of climate change on this highly important marine ecosystem.


Subject(s)
Alismatales , Animals , Mediterranean Sea , Risk Factors , Temperature , Bays , Time Factors
6.
Oncol Ther ; 12(3): 585-598, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38829416

ABSTRACT

INTRODUCTION: RTXM83, a biosimilar of rituximab, was approved after physicochemical, functional, non-clinical, and clinical studies demonstrated their similarity; these studies included RTXM83-AC-01-11, a multicentric double-blind international prospective pivotal study. Long-term data on biosimilars can potentially elucidate their clinical robustness and facilitate their broader adoption. METHODS: In this retrospective observational study, we analyzed a dataset from a Brazilian cohort previously randomized in the RTXM83-AC-01-11 study followed by the assessment of long-term outcomes in an observational extension phase from randomization in the RTXM83-AC-01-11 study to the last recorded evaluation. Patients with diffuse large B cell lymphoma (DLBCL) received either reference rituximab (R) or RTXM83 plus cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) as adjuvant treatment. RESULTS: The median follow-up period was 77.0 months. Patients with initial DLBCL stages III and IV comprised 50% of the R-CHOP group and 40% of the biosimilar group. Five (18.5%) patients, including two RTXM83-CHOP-treated and three R-CHOP-treated individuals, experienced late adverse events (AEs) of interest. No new safety signs were established. At the final assessment, the progression-free survival (PFS) rates were 93.3% and 50.0% in the RTXM83-CHOP and R-CHOP groups, respectively. Median PFS was not achieved in the RTXM83-CHOP group, which was 40.5 months in the R-CHOP group. The overall survival (OS) rates were 100% and 66.7% in the RTXM83-CHOP and R-CHOP groups, respectively. The median OS was not reached in any group. CONCLUSION: This study demonstrated the long-term safety and effectiveness of RTXM83 in treating DLBCL; outcomes comparable to those of the reference product and potentially improved access to treatment have been indicated. However, further research with more diverse patient groups can validate these findings and advocate the broader adoption of biosimilars in cancer care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04928573. June 16, 2021, "retrospectively registered".

7.
Ecol Lett ; 27(5): e14438, 2024 May.
Article in English | MEDLINE | ID: mdl-38783567

ABSTRACT

Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.


Subject(s)
Epichloe , Stochastic Processes , Symbiosis , Epichloe/physiology , Poaceae/microbiology , Poaceae/physiology , Endophytes/physiology , Models, Biological , Microbiota
8.
Biomedicines ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790900

ABSTRACT

This multicenter, randomized study aimed to compare the sirolimus-eluting BiOSS LIM C dedicated coronary bifurcation stent with second-generation -limus drug-eluting stents (rDESs) in the treatment of non-left main (non-LM) coronary bifurcation. The deployment of a single stent in the main vessel-main branch across a side branch was the default strategy in all patients. The primary endpoint was the rate of major cardiovascular events (cardiac death, myocardial infarction, and target lesion revascularization) at 48 months. We enrolled 230 patients, allocating 116 patients to the BiOSS LIM C group and 114 patients to the rDES group. Most procedures were elective (BiOSS vs. rDES: 48.3% vs. 59.6%, p = 0.09) and performed in bifurcations within the left anterior descending/diagonal branch (BiOSS vs. rDES: 51.7% vs. 61.4%, p = 0.15). At 48 months, there were no statistically significant differences between the BiOSS and rDES groups in terms of major adverse cardiovascular events (MACE), cardiac death, myocardial infarction (MI), or target lesion revascularization (TLR) as follows: MACEs-18.1% vs. 14.9%, HR 1.36, 95% CI 0.62-2.22, and p = 0.33; cardiac death-4.3% vs. 3.5%, HR 1.23, 95% CI 0.33-4.56, and p = 0.75; MI-2.6% vs. 3.5%, HR 0.73, 95% CI 0.17-3.23, and p = 0.68; and TLR-11.2% vs. 7.9%, HR 1.66, 95% CI 0.75-3.71, and p = 0.21. The implantation success rate of the BiOSS LIM C stent was very high, and the cumulative MACE rates were promising. The POLBOS 3 trial sets an important benchmark for treating non-LM coronary bifurcations (ClinicalTrials.gov NCT03548272).

9.
Front Neurosci ; 18: 1322105, 2024.
Article in English | MEDLINE | ID: mdl-38586192

ABSTRACT

Introduction: Spinal cord stimulation is a common treatment option for neuropathic pain conditions. Despite its extensive use and multiple technological evolutions, long term efficacy of spinal cord stimulation is debated. Most studies on spinal cord stimulation include a rather limited number of patients and/or follow-ups over a limited period. Therefore, there is an urgent need for real-world, long-term data. Methods: In 2018, the Belgian government initiated a nationwide secure platform for the follow-up of all new and existing spinal cord stimulation therapies. This is a unique approach used worldwide. Four years after the start of centralized recording, the first global extraction of data was performed. Results: Herein, we present the findings, detailing the different steps in the centralized procedure, as well as the observed patient and treatment characteristics. Furthermore, we identified dropouts during the screening process, the reasons behind discontinuation, and the evolution of key indicators during the trial period. In addition, we obtained the first insights into the evolution of the clinical impact of permanent implants on the overall functioning and quality of life of patients in the long-term. Discussion: Although these findings are the results of the first data extraction, some interesting conclusions can be drawn. The long-term outcomes of neuromodulation are complex and subject to many variables. Future data extraction will allow us to identify these confounding factors and the early predictors of success. In addition, we will propose further optimization of the current process.

10.
Sci Total Environ ; 927: 171959, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38537816

ABSTRACT

Browning of freshwaters, mainly caused by increased terrestrial organic carbon loading, has been widely studied during the last decades. However, there are still uncertainties regarding both the extent of browning in different aquatic ecosystems and the actual importance of different driving forces and mechanisms. To refine understanding of the extent and causes of browning and its temporal variation, we gathered a comprehensive dataset including 746 Finnish water quality monitoring stations representing various waterbody types: streams, rivers, lakes, and coastal waters. Monotonic trend analyses revealed that TOC concentrations increased in all waterbody types during the study period from 1990 to 2020, whereas non-linear trends indicated that upward trends in TOC concentrations have substantially decreased since the mid-2000s. However, despite the upward trends levelling off, non-linear analyses also indicated decreases in TOC concentrations at only a few stations. As a result, the TOC contents of the majority of Finnish waterbody types in 2020 were at a higher level than in 1990. To examine the driving forces of increasing TOC concentrations, we selected 100 riverine catchments and linked the detected trends to 24 different drivers, including both hydrometeorological and catchment characteristics. The increased TOC concentrations in surface waters could be connected to diverse human impacts: hydrometeorological variables impacted by climate change, decreased acidic deposition, and land use in terms of peatland drainage. The importance of increased temperatures was emphasized, and its role as a driver of increased leaching of organic carbon in the forthcoming years is expected to grow with climate change.

11.
Parasitology ; 151(3): 300-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212980

ABSTRACT

A 30 years long data series on the infection dynamics of European eel (Anguilla anguilla L.) with the non-native invasive nematode Anguillicola crassus Kuwahara, Niimi & Hagaki, 1974 is presented. Parasite burden was evaluated for 30 years in inland and coastal waters in Mecklenburg-Western Pomerania from 1991 to 2020. The total prevalence, mean intensity and damage status of the swim bladders were very high during the first decade (1991­2000), and significantly decreased in both marine and freshwater eel populations in the following decades (2001­2010, 2011­2020). The parasite intensity of eels in coastal waters was significantly lower compared with the freshwater systems (61.3% vs 79.5% in the first decade), indicating the vulnerability of the parasites to brackish water conditions and the fact that the life cycle of A. crassus cannot be completed under high saline conditions. Eel caught in the western part of the Baltic Sea (west of Darss sill) had the lowest mean infection (51.8% in first decade) compared to the eastern part with 63.8%. Thus, besides different infection patterns caused by the environmental conditions, a temporal trend towards a reduced parasite intensity and a more balanced parasite­host relationship developed in the 30 years of interaction after the first invasion. Possible reasons and mechanisms for the observed trends in parasite­host interactions are discussed.


Subject(s)
Anguilla , Dracunculoidea , Fish Diseases , Animals , Anguilla/parasitology , Air Sacs/parasitology , Life Cycle Stages , Germany/epidemiology , Fish Diseases/epidemiology , Fish Diseases/parasitology
12.
Environ Monit Assess ; 195(12): 1478, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966615

ABSTRACT

Forest resource reporting techniques primarily use the two most recent measurements for understanding forest change. Multiple remeasurements now exist within the US national forest inventory (NFI), providing an opportunity to examine long-term forest demographics. We leverage two decades of remeasurements to quantify live-dead wood demographics which can better inform estimates of resource changes in forest ecosystems. Our overall objective is to identify opportunities and gaps in tracking 20 years of forest demographics within the US NFI using east Texas as a pilot study region given its diversity of tree species, prevalence of managed conditions, frequency of disturbances, and relatively rapid change driven by a warm, humid climate. We examine growth and mortality rates, identify transitions to downed dead wood/litter and removal via harvest, and describe implications of these processes focusing on key species groups (i.e., loblolly pine, post oak, and water oak) and size classes (i.e., saplings, small and large trees). Growth and mortality rates fluctuated differently over time by species and stem sizes in response to large-scale disturbances, namely the 2011 drought in Texas. Tree-fall rates were highest in saplings and snag-fall rates trended higher in smaller trees. For removal rates, different stem sizes generally followed similar patterns within each species group. Forest demographics from the field-based US NFI are informative for identifying diffuse lagged mortality, species- and size-specific effects, and management effects. Moreover, researchers continually seek to employ ancillary data and develop new statistical methods to enhance understanding of forest resource changes from field-based inventories.


Subject(s)
Ecosystem , Quercus , Pilot Projects , Texas , Environmental Monitoring , Forests , Trees , Demography
13.
Ecol Lett ; 26(12): 2066-2076, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37818595

ABSTRACT

Bird species on islands are strongly impacted by biological invasions, with the Icelandic common eider (Somateria mollissima borealis) being particularly threatened. Down collection by local families in Breiðafjörður, West Iceland, provided long-term datasets of nests from two archipelagos, covering 95 islands over 123 years and 39 islands over 27 years, respectively. Using these exceptional datasets, we found that the arrival of the invasive semi-aquatic American mink (Neogale vison) was a more impactful driver of population dynamics than climate. This invasive predator heavily reduced eider nest numbers by ca. 60% in the Brokey archipelago. In contrast, we detected an apparently adaptive response to the return of the native fox in the Purkey archipelago, with dense nests on islands inaccessible to the fox and no apparent impact on eider populations. This difference might be due to the eiders lacking a joint evolutionary history with the mink and therefore lacking appropriate antipredator responses.


Subject(s)
Ducks , Foxes , Animals , Birds , Ducks/physiology , Foxes/physiology , Iceland , Population Dynamics
14.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620157

ABSTRACT

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Subject(s)
Sleep, REM , Sleep , Humans , Electric Impedance , Sleep/physiology , Sleep, REM/physiology , Brain/physiology , Wakefulness/physiology , Hippocampus
15.
Curr Biol ; 33(18): 3977-3984.e4, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37633280

ABSTRACT

Climate warming has major consequences for animal populations, as ambient temperature profoundly influences all organisms' physiology, behavior, or both.1 Body size in many organisms has been found to change with increased ambient temperatures due to influences on metabolism and/or access to resources.2,3,4,5,6 Changes in body size, in turn, can affect the dynamics and persistence of populations.7 Notably, in some species, body size has increased over the last decades in response to warmer temperatures.3,8 This has primarily been attributed to higher food availability,3 but might also result from metabolic savings in warmer environments.9,10 Bechstein's bats (Myotis bechsteinii) grow to larger body sizes in warmer summers,11 which affects their demography as larger females reproduce earlier at the expense of a shorter life expectancy.12,13 However, it remains unclear whether larger body sizes in warmer summers were due to thermoregulatory benefits or due to increased food availability. To disentangle these effects, we artificially heated communal day roosts of wild maternity colonies over four reproductive seasons. We used generalized mixed models to analyze these experimental results along with 25 years of long-term data comprising a total of 741 juveniles. We found that individuals raised in heated roosts grew significantly larger than those raised in unheated conditions. This suggests that metabolic savings in warmer conditions lead to increased body size, potentially resulting in the decoupling of body growth from prey availability. Our study highlights a direct mechanism by which climate change may alter fitness-relevant traits, with potentially dire consequences for population persistence.


Subject(s)
Chiroptera , Animals , Female , Pregnancy , Body Size , Body Temperature Regulation , Chiroptera/physiology , Reproduction/physiology , Temperature
16.
Haemophilia ; 29(5): 1259-1268, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37584309

ABSTRACT

INTRODUCTION: Recombinant porcine factor VIII (rpFVIII, susoctocog alfa) is indicated for the treatment of bleeding episodes in adults with acquired haemophilia A (AHA). AIM: To provide long-term real-world safety and effectiveness data for rpFVIII in the management of AHA bleeding episodes. METHODS: US PASS (NCT02610127) was a multicentre, uncontrolled, open-label, post-marketing safety surveillance study conducted in adults with AHA. Data were collected retrospectively or prospectively for 180 days after rpFVIII treatment. The primary outcome was the incidence of treatment-related serious adverse events (SAEs). Secondary outcomes included haemostatic effectiveness of rpFVIII and rpFVIII utilization. RESULTS: Fifty-three patients were enrolled from December 2015 to June 2019 (prospective, n = 30; retrospective, n = 23). Six patients experienced seven treatment-related SAEs (incidence 12.0%). The most common treatment-related SAE was FVIII inhibition (inhibiting antibodies to rpFVIII; incidence 8.0%, 95% CI: 2.2-19.2). Five patients reported seven thromboembolic events; one was an SAE and possibly related to rpFVIII. Of bleeding events treated with rpFVIII, 80.3% (57/71) of bleeds resolved with rpFVIII. The median (range) dose of rpFVIII per infusion was 50 (10-300) units/kg, with a median (range) of 6.0 (1-140) infusions and a median (range) time from bleed onset to bleed resolution of 14.0 (2.0-132.7) days. CONCLUSION: In this real-world study of rpFVIII for AHA, no new safety signals were identified compared with previous clinical trial findings. Eighty percent of bleeds resolved with rpFVIII treatment.


Subject(s)
Factor VIII , Hemophilia A , Swine , Animals , Factor VIII/adverse effects , Hemophilia A/complications , Retrospective Studies , Prospective Studies , Hemorrhage/drug therapy , Hemorrhage/etiology , Recombinant Proteins/adverse effects , Treatment Outcome
17.
ACS Nano ; 17(16): 15401-15410, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37440601

ABSTRACT

Today's huge amount of data generation and transfer induced an urgent requirement for long-term data storage. Here, we demonstrate and discuss a concept for long-term storage using NV centers inside nanodiamonds. The approach is based upon the radiation-induced generation of additional vacancies (so-called GR1 states), which quench the initial NV centers, resulting in a reduced overall fluorescence lifetime of the NV center. Using the tailored fluorescence lifetime of the NV center to code the information, we demonstrate a "beyond binary" data storage density per bit. We also demonstrate that this process is reversible by heating the sample or the spot of information. This proof of principle shows that our technique may be a promising alternative data storage technology, especially in terms of long-term storage, due to the high stability of the involved color centers. In addition to the proof-of-principle demonstration using macroscopic samples, we suggest and discuss the usage of focused electron beams to write information in nanodiamond materials, to read it out with focused low-intensity light, and to erase it on the macro-, micro-, or nanoscale.

18.
Sci Total Environ ; 900: 165764, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37516173

ABSTRACT

Long-term records of combined stream flow and water chemistry can be an invaluable source of information on changes in the quantity and quality of water resources. To understand the effect of hydroclimate and water management on the heavily urbanized Panke catchment in Berlin, Germany, an extensive search, collation and digitization of historic data from various sources was undertaken. This integrated a unique 66-year spatially distributed record of stream water quality, a 21-year record of groundwater quality and a 31-year stream flow record. These data were analysed in the context of hydroclimatic variability, as well as the history and technological evolution of water resource management in the catchment. To contextualize the effect of droughts, "average" and wet years the Standard Precipitation Index (SPI) was applied. As upstream sites have been less regulated by human impacts, the flow regime is most sensitive to changes in hydroclimatic conditions, while downstream sites are more influenced by wastewater effluents, urban storm drains and inter-basin transfers for flood alleviation. However, at all sites, a general increase in maximum event discharge was observed until a recent drought, starting in 2018. In general, water quality in the catchment has gradually improved as a result of management change and increasingly effective wastewater treatment, though in some places legacy and/or contemporary urban and rural groundwater contamination may be affecting the stream. Hydroclimatic changes, particularly drought years can affect water quality classes, and alter the chemostatic/dynamic behaviour of catchment export patterns. These insights from the Panke catchment underline the importance of strategic adaptation and improvement of water treatment and water resource management in order to enhance the quality of urban water courses. It also demonstrates the importance of long-term integrated data sets.

19.
BioTech (Basel) ; 12(2)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37366792

ABSTRACT

The demand for data storage is growing at an unprecedented rate, and current methods are not sufficient to accommodate such rapid growth due to their cost, space requirements, and energy consumption. Therefore, there is a need for a new, long-lasting data storage medium with high capacity, high data density, and high durability against extreme conditions. DNA is one of the most promising next-generation data carriers, with a storage density of 10¹9 bits of data per cubic centimeter, and its three-dimensional structure makes it about eight orders of magnitude denser than other storage media. DNA amplification during PCR or replication during cell proliferation enables the quick and inexpensive copying of vast amounts of data. In addition, DNA can possibly endure millions of years if stored in optimal conditions and dehydrated, making it useful for data storage. Numerous space experiments on microorganisms have also proven their extraordinary durability in extreme conditions, which suggests that DNA could be a durable storage medium for data. Despite some remaining challenges, such as the need to refine methods for the fast and error-free synthesis of oligonucleotides, DNA is a promising candidate for future data storage.

20.
Glob Chang Biol ; 29(13): 3678-3691, 2023 07.
Article in English | MEDLINE | ID: mdl-37029755

ABSTRACT

Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4 ) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long-term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non-inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long-term measurements.


Subject(s)
Ecosystem , Methane , Typhaceae , Carbon Dioxide/analysis , Grassland , Soil , Water , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL