Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Antioxidants (Basel) ; 13(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39334736

ABSTRACT

Out-of-season breeding is an effective method for addressing seasonal shortages of fry in aquaculture species such as largemouth bass (LMB) for year-round production. Off-season breeding of LMB can be achieved by subjecting breeding LMB to prolonged low-temperature conditions; however, this can alter reproductive rhythms, affecting the quality of their sperm and leading to a decrease in reproductive efficiency. Therefore, it is crucial to investigate issues such as the damage to the testes and the related mechanisms caused by low-temperature stress during out-of-season breeding. In this experiment, we assessed the changes in the testes during this time in LMB by comparing reproductive rhythms, testicular histomorphology, ultrastructure, antioxidant capacity and apoptosis. We synthesized measurements of LMB from three identically treated cement ponds and fish exposed to water temperatures of 13-16 °C to assess the changes in the testes. The results showed that (1) out-of-season reproduction delayed sperm production and promoted sperm redevelopment in LMB, various hormone levels have changed over time (e.g., LH, FSH, and T). (2) The head plasma membrane of LMB spermatozoa was separated, and the middle mitochondria were swollen. (3) The expression levels of antioxidant enzymes (cat, sod, and gpx) were upregulated, and oxidative stress occurred in LMB. (4) The expression levels of apoptosis genes (e.g., bax, bcl2, and caspase3) were upregulated, and apoptosis occurred in LMB due to off-season breeding. Moreover, important genes of the mitochondrial apoptosis pathway (bid, CYT-C) were upregulated, indicating that spermatozoan apoptosis in LMB was probably achieved through the mitochondrial apoptosis pathway. These results suggest the delays, damage, and regeneration of LMB testes. Our findings provide new insights into the molecular mechanisms that trigger changes in sperm quality during out-of-season breeding in fish.

2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273343

ABSTRACT

Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 µM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.


Subject(s)
Brassinosteroids , Gene Expression Regulation, Plant , Steroids, Heterocyclic , Transcriptome , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/drug effects , Zea mays/growth & development , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Steroids, Heterocyclic/pharmacology , Gene Expression Regulation, Plant/drug effects , Seedlings/genetics , Seedlings/metabolism , Seedlings/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Profiling/methods , Reactive Oxygen Species/metabolism , Cold Temperature , Stress, Physiological , Cold-Shock Response , Plant Proteins/metabolism , Plant Proteins/genetics
3.
BMC Plant Biol ; 24(1): 901, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350016

ABSTRACT

BACKGROUND: Low temperature seriously limited the development of grass and crops in plateau. Thus, it is urgent to develop an effective strategy for improving the plant cold tolerance and elucidate the underlying mechanisms. RESULTS: We found that MT alleviated the effects of cold stress on suppressing ENG growth, then improved cold tolerance of ENG. Integration of transcriptome and metabolome profiles showed that both cold exposure (TW) and MT reprogrammed the transcription pattern of galactose and flavonoids biosynthesis, leading to changes in compositions of soluble sugar and flavonoids in ENG. Additionally, TW inhibited the photosynthesis, and destroyed the antioxidant system of ENG, leading to accumulation of oxidant radicals represented by MDA. By contrast, MT promoted activities of antioxidant enzymes and flavonoid accumulation in ENG under cold condition, then reduced the MDA content and maintained normal expression of photosynthesis-related genes in ENG even under TW. Importantly, MT mainly enhanced cold tolerance of ENG via activating zeatin synthesis to regulate flavonoid biosynthesis in vivo. Typically, WRKY11 was identified to regulate MT-associated zeatin synthesis in ENG via directly binding on zeatin3 promoter. CONCLUSIONS: MT could enhance ENG tolerance to cold stress via strengthening antioxidant system and especially zeatin synthesis to promote accumulation of flavonoids in ENG. Thus, our research gain insight into the global mechanisms of MT in promoting cold tolerance of ENG, then provided guidance for protecting plant from cold stress in plateau.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Cold-Shock Response , Flavonoids/metabolism , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Photosynthesis , Poaceae/genetics , Poaceae/metabolism , Poaceae/physiology , Antioxidants/metabolism
4.
BMC Plant Biol ; 24(1): 883, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342089

ABSTRACT

BACKGROUND: AP2/ERF transcription factors are involved in the regulation of growth, development, and stress response in plants. Although the gene family has been characterized in various species, such as Oryza sativa, Arabidopsis thaliana, and Populus trichocarpa, studies on the Prunus sibirica AP2/ERF (PsAP2/ERF) gene family are lacking. In this study, PsAP2/ERFs in P. sibirica were characterized by genomic and transcriptomic analyses. RESULTS: In the study, 112 PsAP2/ERFs were identified and categorized into 16 subfamilies. Within each subfamily, PsAP2/ERFs exhibited similar exon-intron structures and motif compositions. Additionally, 50 pairs of segmentally duplicated genes were identified within the PsAP2/ERF gene family. Our experimental results showed that 20 PsAP2/ERFs are highly expressed in leaves, roots, and pistils under low-temperature stress conditions. Among them, the expression of PsAP2/ERF21, PsAP2/ERF56 and PsAP2/ERF88 was significantly up-regulated during the treatment period, and it was hypothesised that members of the PsAP2/ERF family play an important role inlow temperature stress tolerance. CONCLUSIONS: This study improves our understanding of the molecular basis of development and low-temperature stress response in P. sibirica and provides a solid scientific foundation for further functional assays and evolutionary analyses of PsAP2/ERFs.


Subject(s)
Multigene Family , Plant Proteins , Prunus , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus/genetics , Prunus/physiology , Phylogeny , Gene Expression Regulation, Plant , Genome, Plant , Cold Temperature , Transcription Factors/genetics , Transcription Factors/metabolism , Cold-Shock Response/genetics , Gene Expression Profiling , Genes, Plant , Stress, Physiological/genetics
5.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273211

ABSTRACT

Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1-BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members.


Subject(s)
Brassica , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Transcriptome , Brassica/genetics , Brassica/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Gene Expression Profiling , Multigene Family , Phylogeny
6.
Plants (Basel) ; 13(16)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39204665

ABSTRACT

Pinus massoniana L. is one of the most important conifer species in southern China and is the mainstay of the forest ecosystem and timber production, yet low temperatures limit its growth and geographical distribution. This study used 30-day-old seedlings from families of varying cold-tolerance to examine the morphological traits of needles and stems, chlorophyll fluorescence characteristics, protective enzymes, and changes in starch and lignin under different low-temperature stresses in an artificial climate chamber. The results showed that the seedlings of Pinus massoniana exhibited changes in phenotypic morphology and tissue structure under low-temperature stress. Physiological and biochemical indexes such as protective enzymes, osmoregulatory substances, starch, and lignin responded to low-temperature stress. The cold-tolerant family increased soluble sugars, starch grain, and lignin content as well as peroxidase activity, and decreased malondialdehyde content by increasing the levels of actual photochemical efficiency (ΦPSII), electron transport rate (ETR), and photochemical quenching (qP) to improve the cold tolerance ability. This study provides a reference for the selection and breeding of cold-tolerant genetic resources of Pinus massoniana and the mechanism of cold-tolerance, as well as the analysis of the mechanism of adaptation of Pinus massoniana in different climatic regions of China.

7.
Plant Physiol Biochem ; 215: 109055, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39182426

ABSTRACT

Low temperature (LT) is an important environmental factor affecting the growth and yield of plants. Melatonin (MT) can effectively enhance the LT tolerance of cucumber. This study found that LT stress induced the expression of Comt1 (caffeic acid O-methyltransferase 1), with the highest expression being about 2-times that of the control. Meanwhile, the content of MT was found to be roughly 63.16% of that in the control samples. Compared with LT treatment alone, exogenous MT pretreatment upregulated the expression levels of TOR (Target of rapamycin), PIN1 (Pin-formed 1), and YUC4 (YUCCA 4), with maximum upregulations reaching approximately 66.67%, 79.32%, and 42.86%, respectively. These results suggest that MT may modulate the tolerance of cucumber seedlings to LT stress by regulating the expression of TOR, PIN1, and YUC4. In addition, co-treatment with AZD-8055 (a TOR inhibitor) or NPA (N-1-naphthylphthalamic acid, an auxin polar transport inhibitor) and MT attenuated MT-induced resistance to LT stress, leading to higher levels of reactive oxygen species (ROS), reduced antioxidant defense capacity, and increased damage to the membrane system in cucumber seedlings. Concurrently, the content of osmoregulatory substances and the photosynthesis decreased. These results demonstrate that both TOR and auxin were required for MT to alleviate LT-induced damage in cucumber. In summary, the present study demonstrates that TOR and auxin signaling synergistically contribute to alleviating LT damage in cucumber seedlings by exogenous MT. These findings help us understand the function of MT and provide insights into the regulatory network of MT that regulates the LT tolerance of plants.


Subject(s)
Cucumis sativus , Indoleacetic Acids , Melatonin , Seedlings , Cucumis sativus/drug effects , Cucumis sativus/metabolism , Cucumis sativus/growth & development , Melatonin/pharmacology , Melatonin/metabolism , Seedlings/drug effects , Seedlings/metabolism , Indoleacetic Acids/metabolism , Cold Temperature , Plant Proteins/metabolism , Plant Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Gene Expression Regulation, Plant/drug effects , Reactive Oxygen Species/metabolism
8.
Fish Shellfish Immunol ; 153: 109834, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151840

ABSTRACT

This experiment was conducted to explore the effects of dietary vitamin C supplementation on non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab (Scylla paramamosain). Mud crabs with an initial weight of 14.67 ± 0.13 g were randomly divided into 6 treatments and fed diets with 0.86 (control), 44.79, 98.45, 133.94, 186.36 and 364.28 mg/kg vitamin C, respectively. The experiment consisted of 6 treatments, each treatment was designed with 4 replicates and each replicate was stocked with 8 crabs. After 42 days of feeding experiment, 2 crabs were randomly selected from each replicate, and a total of 8 crabs in each treatment were carried out 72 h low-temperature challenge experiment. The results showed that crabs fed diets with 186.36 and 364.28 mg/kg vitamin C significantly improved the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemolymph and hepatopancreas (P < 0.05). Crabs fed diet with 133.94 mg/kg vitamin C significantly decreased the concentration of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in hemolymph (P < 0.05). Diet with 133.94 mg/kg vitamin C was improved the activity of polyphenol oxidase (PPO) and the concentration of albumin (ALB) in hemolymph. Crabs fed diet with 133.94 mg/kg vitamin C showed lower concentration of malondialdehyde (MDA) in hemolymph and hepatopancreas than those fed the other diets. Meanwhile, crabs fed diet with 98.45 mg/kg vitamin C showed higher activity of total superoxide dismutase (T-SOD) in hemolymph, and crabs fed diet with 133.94 mg/kg vitamin C showed higher activity of T-SOD in hepatopancreas. Crabs fed diet with 186.36 mg/kg vitamin C significantly decreased the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GSH-PX) in hepatopancreas (P < 0.05). In normal temperature, crabs fed diets with 133.94 mg/kg vitamin C significantly up-regulated the expression levels of gpx (glutathione peroxidase) and trx (thioredoxin) in hepatopancreas compared with the control treatment (P < 0.05). The highest expression levels of relish, il16 (interleukin 16), caspase 2 (caspase 2), p38 mapk (p38 mitogen-activated protein kinases) and bax (bcl-2 associated x protein) in hepatopancreas were found at crabs fed control diet (P < 0.05). Moreover, crabs fed diet with 133.94 mg/kg vitamin C showed higher expression levels of alf-3 (anti-lipopolysaccharide factor 3) and bcl-2 (B-cell lymphoma 2) in hepatopancreas than those fed the other diets (P < 0.05). Under low-temperature stress, crabs fed diet with 133.94 mg/kg vitamin C significantly improved the expression levels of hsp90 (heat shock protein 90), cat (catalase), gpx, prx (thioredoxin peroxidase) and trx in hepatopancreas (P < 0.05). In addition, dietary with 133.94 vitamin C significantly up-regulated the expression levels of alf-3 and bcl-2 (P < 0.05). Based on two slope broken-line regression analysis of activity of PPO against the dietary vitamin C level, the optimal dietary vitamin C requirement was estimated to be 144.81 mg/kg for juvenile mud crab. In conclusion, dietary 133.94-144.81 mg/kg vitamin C significantly improved the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab.


Subject(s)
Animal Feed , Antioxidants , Ascorbic Acid , Brachyura , Cold Temperature , Diet , Dietary Supplements , Immunity, Innate , Animals , Brachyura/immunology , Brachyura/drug effects , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Animal Feed/analysis , Diet/veterinary , Immunity, Innate/drug effects , Dietary Supplements/analysis , Antioxidants/metabolism , Random Allocation , Stress, Physiological/drug effects , Dose-Response Relationship, Drug
9.
BMC Genomics ; 25(1): 779, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128988

ABSTRACT

Catalpa bungei, a tree indigenous to China, is renowned for its superior timber quality and as an ornamental in horticulture. To promote the cultivation of C. bungei in cold regions and expand its distribution, enhancing its cold tolerance is essential. The CCCH gene family is widely involved in plant growth, development, and expression under stress conditions, including low-temperature stress. However, a comprehensive identification and analysis of these genes have not yet been conducted. This study aims to identify key cold-tolerance-related genes within the CCCH gene family of C. bungei, providing the necessary theoretical support for its expansion in cold regions. In this study, 61 CCCH genes within C. bungei were identified and characterized. Phylogenetic assessment divided these genes into 9 subfamilies, with 55 members mapped across 16 chromosomes. The analysis of gene structures and protein motifs indicated that members within the same subfamily shared similar exon/intron distribution and motif patterns, supporting the phylogenetic classification. Collinearity analysis suggested that segmental duplications have played a significant role in the expansion of the C. bungei CCCH gene family. Notably, RNA sequencing analysis under 4 °C cold stress conditions identified CbuC3H24 and CbuC3H58 as exhibiting the most significant responses, highlighting their importance within the CCCH zinc finger family in response to cold stress. The findings of this study lay a theoretical foundation for further exploring the mechanisms of cold tolerance in C. bungei, providing crucial insights for its cultivation in cold regions.


Subject(s)
Cold-Shock Response , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Cold-Shock Response/genetics , Plant Proteins/genetics , Cold Temperature , Gene Expression Profiling , Genes, Plant
10.
J Econ Entomol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018046

ABSTRACT

Global climate warming and frequent extreme low-temperature events have made it essential to investigate the impact of low temperatures on parasitic wasps to protect and strengthen farmland biodiversity, which in turn enhances the biological control potential of natural enemies such as parasitic wasps. We systematically examined how low-temperature stress affects the parasitic functional response of Trichopria drosophilae to Drosophila suzukii (Diptera: Drosophilidae) pupae. Our findings indicate that the parasitic behavior of T. drosophilae towards D. suzukii pupae aligns with the Holling II functional response model following exposure to different temperatures. Within the temperature range of 8 °C to -8 °C, lower temperatures correlated decreased instantaneous attack rate of T. drosophilae and an increase in processing time. The search constant Q initially increased and then decreased with declining temperatures. Short-term low-temperature stress negatively impacted the parasitic and searching abilities of T. drosophilae but did not alter its parasitic functional response model. Notably, short-term low-temperature stress had minimal effects on the water content, protein content, and total sugar content of male and female T. drosophilae adults. However, as temperatures decreased, the activities of key enzymes, including GAPDH, SOD, T-AOC, and malondialdehyde (MDA), exhibited an initial increase followed by a decrease. Conversely, the activities of LDH and HOAD decreased, while the activities of CAT and POD increased. Further study on the effect of short-term low temperature on T. drosophilae can provide a research basis for the large-scale production and low-temperature refrigeration technology of T. drosophilae, and provide a scientific basis for its efficient use in the field.

11.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062869

ABSTRACT

Apple is an important horticultural crop, but various adverse environmental factors can threaten the quality and yield of its fruits. The ability of apples to resist stress mainly depends on the rootstock. Malus baccata (L.) Borkh. is a commonly used rootstock in Northeast China. In this study, it was used as the experimental material, and the target gene MbWRKY53 was screened through transcriptome analysis and Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) after cold and drought treatment. Bioinformatics analysis revealed that this transcription factor (TF) belonged to the WRKY TF family, and its encoded protein was localized in the nucleus. RT-qPCR showed that the gene was more easily expressed in roots and young leaves and is more responsive to cold and drought stimuli. Functional validation in Arabidopsis thaliana confirmed that MbWRKY53 can enhance plant tolerance to cold and drought stress. Furthermore, by analyzing the expression levels of genes related to cold and drought stress in transgenic Arabidopsis lines, it was inferred that this gene can regulate the expression of stress-related genes through multiple pathways such as the CBF pathway, SOS pathway, Pro synthesis pathway, and ABA-dependent pathways, enhancing the adaptability of transgenic Arabidopsis to cold and drought environments.


Subject(s)
Arabidopsis , Droughts , Gene Expression Regulation, Plant , Malus , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/physiology , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Malus/genetics , Malus/metabolism , Malus/physiology , Cold Temperature , Cold-Shock Response/genetics , Gene Expression Profiling
12.
Plant Physiol Biochem ; 214: 108957, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059272

ABSTRACT

Sodium nitroprusside (SNP) is a potent nitric oxide (NO) donor that enhances plant tolerance to various abiotic stresses. This research aims to assess the effect of SNP application on rice seedlings subjected to individual and combined exposure to two abiotic stresses viz., low-temperature (LT) and chromium (Cr). Exposure to LT, Cr, and LT+Cr caused severe oxidative damage by stimulating greater production and accumulation of reactive oxygen species (ROS) leading to lipid peroxidation and cell membrane instability. The combined LT+CR stress more intensly increased the cellular oxidative stress and excessive Cr uptake that in turn deteriorated the chlorophyll pigments and photosynthesis, as well as effected the level of tetrapyrrole biosynthesis in rice plants. The reduction in rice seedling growth was more obvious under LT+Cr treatment than their individual effects. The exogenous application of SNP diminished the toxic impact of LT and Cr stress. This was attributed to the positive role of SNP in regulating the endogenous NO levels, free amino acids (FAAs) contents, tetrapyrrole biosynthesis and antioxidants. Consequently, SNP-induced NO decreased photorespiration, ROS generation, lipid peroxidation, and electrolyte leakage. Moreover, exogenous SNP diminished the Cr uptake and accumulation by modulating the ionic homeostasis and strengthening the heavy metals detoxification mechanism, thus improving plant height, biomass and photosynthetic indexes. Essentially, SNP boosts plant tolerance to LT and Cr stress by regulating antioxidants, detoxification mechanism, and the plant's physio-biochemical. Hence, applying SNP is an effective method for boosting rice plant resilience and productivity in the face of escalating environmental stresses and pollutants.


Subject(s)
Antioxidants , Chromium , Cold Temperature , Homeostasis , Nitric Oxide , Oryza , Oxidation-Reduction , Photosynthesis , Oryza/metabolism , Oryza/drug effects , Nitric Oxide/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Homeostasis/drug effects , Chromium/pharmacology , Oxidation-Reduction/drug effects , Stress, Physiological/drug effects , Nitroprusside/pharmacology , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
13.
Plant Physiol Biochem ; 214: 108962, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067105

ABSTRACT

Melatonin (Mel) is recognized as a prominent plant growth regulator. This study investigated the alleviating effect of Mel pretreatment on growth inhibition caused by low-temperature (LT) stress (10 °C/6 °C) in cucumber seedlings and explored the role of the Ca2+/Calcium-dependent protein kinases (CPKs) signaling pathway in Mel-regulated LT tolerance. The main results are as follows: compared to LT treatment alone, 100 µM Mel increased both the content of Ca2+ (highest about 42.01%) and the expression levels of Ca2+ transporter and cyclic nucleotide-gated channel (CNGC) genes under LT. Similarly, Mel enhanced the content of CPKs (highest about 27.49%) and the expression levels of CPKs family genes in cucumber leaves under LT. Additionally, pretreatment with 100 µM Mel for three days strengthened the antioxidant defense and photosynthesis of seedlings under LT. Genes in the ICE-CBF-COR pathway and the MAPK cascade were upregulated by Mel, with maximum upregulations reaching approximately 2.5-fold and 1.9-fold, respectively, thus conferring LT tolerance to cucumber seedlings. However, the above beneficial effects of Mel were weakened by co-treatment with calcium signaling blockers (LaCl3 or EGTA) or CPKs inhibitors (TFP or W-7), suggesting that the Ca2+/CPKs pathway is involved in the Mel-mediated regulation of LT tolerance. In conclusion, this study revealed that Mel can alleviate growth inhibition in cucumber seedlings under LT stress and demonstrated that the Ca2+/CPKs signaling pathway is crucial for the Mel-mediated enhancement of LT tolerance. The findings hold promise for providing theoretical insights into the application of Mel in agricultural production and for investigating its underlying mechanisms of action.


Subject(s)
Cold Temperature , Cucumis sativus , Melatonin , Plant Proteins , Seedlings , Signal Transduction , Cucumis sativus/drug effects , Cucumis sativus/genetics , Cucumis sativus/metabolism , Cucumis sativus/growth & development , Melatonin/pharmacology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Gene Expression Regulation, Plant/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Photosynthesis/drug effects
14.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999994

ABSTRACT

Quinoa is a nutritious crop that is tolerant to extreme environmental conditions; however, low-temperature stress can affect quinoa growth, development, and quality. Considering the lack of molecular research on quinoa seedlings under low-temperature stress, we utilized a Weighted Gene Co-Expression Network Analysis to construct weighted gene co-expression networks associated with physiological indices and metabolites related to low-temperature stress resistance based on transcriptomic data. We screened 11 co-expression modules closely related to low-temperature stress resistance and selected 12 core genes from the two modules that showed the highest associations with the target traits. Following the functional annotation of these genes to determine the key biological processes and metabolic pathways involved in low-temperature stress, we identified four important transcription factors involved in resistance to low-temperature stress: gene-LOC110731664, gene-LOC110736639, gene-LOC110684437, and gene-LOC110720903. These results provide insights into the molecular genetic mechanism of quinoa under low-temperature stress and can be used to breed lines with tolerance to low-temperature stress.


Subject(s)
Chenopodium quinoa , Gene Expression Regulation, Plant , Gene Regulatory Networks , Seedlings , Chenopodium quinoa/genetics , Seedlings/genetics , Seedlings/growth & development , Cold Temperature , Cold-Shock Response/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling/methods , Transcriptome , Genes, Plant
15.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000350

ABSTRACT

Low temperature is the most common abiotic factor that usually occurs during the seed germination of alfalfa (Medicago sativa L.). However, the potential regulatory mechanisms involved in alfalfa seed germination under low temperature stress are still ambiguous. Therefore, to determine the relevant key genes and pathways, the phenotypic and transcriptomic analyses of low-temperature sensitive (Instict) and low-temperature tolerant (Sardi10) alfalfa were conducted at 6 and 15 h of seed germination under normal (20 °C) and low (10 °C) temperature conditions. Germination phenotypic results showed that Sardi10 had the strongest germination ability under low temperatures, which was manifested by the higher germination-related indicators. Further transcriptome analysis indicated that differentially expressed genes were mainly enriched in galactose metabolism and carbon metabolism pathways, which were the most commonly enriched in two alfalfa genotypes. Additionally, fatty acid metabolism and glutathione metabolism pathways were preferably enriched in Sardi10 alfalfa. The Weighted Gene Co-Expression Network Analysis (WGCNA) suggested that genes were closely related to galactose metabolism, fatty acid metabolism, and glutathione metabolism in Sardi10 alfalfa at the module with the highest correlation (6 h of germination under low temperature). Finally, qRT-PCR analysis further validated the related genes involved in the above pathways, which might play crucial roles in regulating seed germination of alfalfa under low temperature conditions. These findings provide new insights into the molecular mechanisms of seed germination underlying the low temperature stress in alfalfa.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Germination , Medicago sativa , Phenotype , Seeds , Transcriptome , Medicago sativa/genetics , Medicago sativa/physiology , Medicago sativa/metabolism , Germination/genetics , Seeds/genetics , Seeds/growth & development , Gene Expression Profiling/methods , Cold Temperature , Cold-Shock Response/genetics , Gene Regulatory Networks
16.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001041

ABSTRACT

Hyperspectral imaging was used to predict the total polyphenol content in low-temperature stressed tomato seedlings for the development of a multispectral image sensor. The spectral data with a full width at half maximum (FWHM) of 5 nm were merged to obtain FWHMs of 10 nm, 25 nm, and 50 nm using a commercialized bandpass filter. Using the permutation importance method and regression coefficients, we developed the least absolute shrinkage and selection operator (Lasso) regression models by setting the band number to ≥11, ≤10, and ≤5 for each FWHM. The regression model using 56 bands with an FWHM of 5 nm resulted in an R2 of 0.71, an RMSE of 3.99 mg/g, and an RE of 9.04%, whereas the model developed using the spectral data of only 5 bands with a FWHM of 25 nm (at 519.5 nm, 620.1 nm, 660.3 nm, 719.8 nm, and 980.3 nm) provided an R2 of 0.62, an RMSE of 4.54 mg/g, and an RE of 10.3%. These results show that a multispectral image sensor can be developed to predict the total polyphenol content of tomato seedlings subjected to low-temperature stress, paving the way for energy saving and low-temperature stress damage prevention in vegetable seedling production.


Subject(s)
Hyperspectral Imaging , Polyphenols , Seedlings , Solanum lycopersicum , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Polyphenols/analysis , Seedlings/chemistry , Hyperspectral Imaging/methods , Cold Temperature
17.
Sci Rep ; 14(1): 15242, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956131

ABSTRACT

The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.


Subject(s)
Apoptosis , Cold Temperature , Cold-Shock Response , Metabolomics , Penaeidae , Animals , Penaeidae/metabolism , Penaeidae/physiology , Metabolomics/methods , Metabolome , Superoxide Dismutase/metabolism
18.
BMC Plant Biol ; 24(1): 536, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862890

ABSTRACT

BACKGROUND: The heavy metal-associated isoprenylated plant protein (HIPP) is an important regulatory element in response to abiotic stresses, especially playing a key role in low-temperature response. RESULTS: This study investigated the potential function of PavHIPP16 up-regulated in sweet cherry under cold stress by heterologous overexpression in tobacco. The results showed that the overexpression (OE) lines' growth state was better than wild type (WT), and the germination rate, root length, and fresh weight of OE lines were significantly higher than those of WT. In addition, the relative conductivity and malondialdehyde (MDA) content of the OE of tobacco under low-temperature treatment were substantially lower than those of WT. In contrast, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) activities, hydrogen peroxide (H2O2), proline, soluble protein, and soluble sugar contents were significantly higher than those of WT. Yeast two-hybrid assay (Y2H) and luciferase complementation assay verified the interactions between PavbHLH106 and PavHIPP16, suggesting that these two proteins co-regulated the cold tolerance mechanism in plants. The research results indicated that the transgenic lines could perform better under low-temperature stress by increasing the antioxidant enzyme activity and osmoregulatory substance content of the transgenic plants. CONCLUSIONS: This study provides genetic resources for analyzing the biological functions of PavHIPPs, which is important for elucidating the mechanisms of cold resistance in sweet cherry.


Subject(s)
Nicotiana , Plant Proteins , Plants, Genetically Modified , Prunus avium , Nicotiana/genetics , Nicotiana/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Prunus avium/genetics , Prunus avium/physiology , Prunus avium/metabolism , Cold-Shock Response/genetics , Cold Temperature , Gene Expression Regulation, Plant
19.
Animals (Basel) ; 14(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891717

ABSTRACT

In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.

20.
Plant Physiol Biochem ; 213: 108840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908352

ABSTRACT

Low-temperature events are one of the leading environmental cues that considerably reduce plant growth and shift species biodiversity. Hydrogen peroxide (H2O2) is a signaling molecule that has a distinguished role during unfavorable conditions and shows outstanding perspectives in low-temperature stress. Herein, we elucidated the protective role and regulatory mechanism of H2O2 in alleviating the deleterious effects of low-temperature stress in pitaya plants. Micropropagated pitaya plants were cultured in Murashige and Skoog media supplemented with different levels of H2O2 (0, 5, 10, and 20 mM) and then exposed to low-temperature stress (5 °C for 24 h). H2O2 at 10 mM, improved low-temperature stress tolerance by relieving oxidative injuries and ameliorating growth parameters in terms of fresh weight (66.7%), plant length (16.7%), and pigments content viz., chlorophyll a (157.4%), chlorophyll b (209.1%), and carotenoids (225.9%). H2O2 counteracted the low-temperature stress by increasing amino acids (224.7%), soluble proteins (190.5%), and sugars (126.6%). Simultaneously, secondary metabolites like ascorbic acid (ASA), anthocyanins, phenolics, flavonoids, total antioxidant (TOA), and proline were also up-regulated by H2O2 (104.9%, 128.8%, 166.3%, 141.4%, and 436.4%, respectively). These results corresponded to the stimulative role triggered by H2O2 in boosting the activities of catalase (22.4%), ascorbate peroxidase (20.7%), superoxide dismutase (88.4%), polyphenol oxidase (60.7%), soluble peroxidase (23.8%), and phenylalanine ammonia-lyase (57.1%) as well as the expression level of HpCAT, HpAPX, HpSOD, HpPPO, and HpPAL genes, which may help to moderate low-temperature stress. In conclusion, our findings stipulate new insights into the mechanisms by which H2O2 regulates low-temperature stress tolerance in pitaya plants.


Subject(s)
Antioxidants , Cactaceae , Gene Expression Regulation, Plant , Hydrogen Peroxide , Nitric Oxide , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Cactaceae/metabolism , Cactaceae/genetics , Gene Expression Regulation, Plant/drug effects , Nitric Oxide/metabolism , Cold Temperature , Up-Regulation/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response
SELECTION OF CITATIONS
SEARCH DETAIL