Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Behav Brain Res ; 465: 114928, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38432301

ABSTRACT

Testosterone (T), estrogen receptor alpha (ERα), and androgen receptor (AR) play a significant role in the regulation of paternal behavior. We determined the effects of deprivation of paternal care on alterations in paternal behavior, T concentrations in plasma, and the presence of ERα and AR in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST), medial amygdala (MeA), and olfactory bulb (OB), as well as the corticosterone (CORT) concentrations in plasma caused by deprivation of paternal care in the Mongolian gerbil (Meriones unguiculatus). Twenty pairs of gerbils were formed; the pups were deprived of paternal care (DPC) in 10 pairs. In another 10 pairs, the pups received paternal care (PC). Ten males raised in DPC condition and 10 males raised in PC conditions were mated with virgin females. When they became fathers, each DPC male and PC male was subjected to tests of paternal behavior on day three postpartum. Blood samples were obtained to quantify T and CORT concentrations, and the brains were removed for ERα and AR immunohistochemistry analyses. DPC males gave less care to their pups than PC males, and they had significantly lower T concentrations and levels of ERα and AR in the mPOA and BNST than PC males. DPC males also had higher CORT concentrations than PC males. These results suggest that in the Mongolian gerbil father's absence causes a decrease in paternal care in the offspring, which is associated with alterations in the neuroendocrine mechanisms that regulate it.


Subject(s)
Receptors, Androgen , Septal Nuclei , Animals , Female , Male , Humans , Gerbillinae/physiology , Receptors, Androgen/metabolism , Septal Nuclei/metabolism , Estrogen Receptor alpha/metabolism , Paternal Behavior/physiology , Preoptic Area/metabolism , Fathers , Corticosterone
2.
Front Behav Neurosci ; 17: 1184885, 2023.
Article in English | MEDLINE | ID: mdl-37456808

ABSTRACT

The postpartum period is a demanding time during which mothers experience numerous physiological adaptations that enable them to care for their offspring while maintaining their wellbeing. Hypocretins, also known as orexins, are neuropeptides synthesized by hypothalamic neurons that play a fundamental role in several functions, including the promotion of wakefulness and motivated behaviors, such as maternal care. In this regard, several findings suggest that the activity of the hypocretinergic system increases in the early postpartum period and begins to decline as weaning approaches. In particular, hypocretins within the medial preoptic area, a crucial region during this period, modulate both maternal behavior and sleep. Although further studies are necessary to obtain a comprehensive understanding of the role of hypocretins in lactating females, current research suggests that this system participates in promoting active components of maternal behavior and regulating wakefulness and sleep adjustments during the postpartum period, potentially leading to increased wakefulness during this stage. These adaptive adjustments enable the mother to cope with the continuously changing demands of the pups.

3.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511364

ABSTRACT

Male mammals display different paternal responses to pups, either attacking or killing the young offspring, or contrastingly, caring for them. The neural circuit mechanism underlying the between-individual variation in the pup-directed responsiveness of male mammals remains unclear. Monogamous mandarin voles were used to complete the present study. The male individuals were identified as paternal and infanticidal voles, according their behavioral responses to pups. It was found that the serotonin release in the medial preoptic area (MPOA), as well as the serotonergic neuron activity, significantly increased upon licking the pups, but showed no changes after attacking the pups, as revealed by the in vivo fiber photometry of the fluorescence signal from the 5-HT 1.0 sensor and the calcium imaging indicator, respectively. It was verified that the 5-HTergic neural projections to the MPOA originated mainly from the ventral part of the dorsal raphe (vDR). Furthermore, the chemogenetic inhibition of serotonergic projections from the vDR to the MPOA decreased the paternal behaviors and shortened the latency to attack the pups. In contrast, the activation of serotonergic neurons via optogenetics extended the licking duration and inhibited infanticide. Collectively, these results elucidate that the serotonergic projections from the vDR to the MPOA, a previously unrecognized pathway, regulate the paternal responses of virgin male mandarin voles to pups.


Subject(s)
Dorsal Raphe Nucleus , Preoptic Area , Humans , Animals , Male , Preoptic Area/metabolism , Fathers , Behavior, Animal/physiology , Arvicolinae
4.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608653

ABSTRACT

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Subject(s)
Sexual Behavior, Animal , Ventromedial Hypothalamic Nucleus , Animals , Sexual Behavior, Animal/physiology , Ventromedial Hypothalamic Nucleus/physiology , Hypothalamus/physiology , Aggression/physiology , Social Behavior
6.
Psychoneuroendocrinology ; 146: 105900, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041295

ABSTRACT

Oxytocin (OT) and vasopressin (VP) are considered to be principal neurochemical substrates of bonding in monogamous species. We have reported previously that conditioning of a sexual partner preference in male rats resulted in conditioned activation of OT and VP neurons in hypothalamic paraventricular and supraoptc nuclei. Here we asked whether such conditioning would also alter OT or VP receptor densities. Sexually naïve male rats were assigned to one of three groups (n = 15/group). The Paired group received 9 copulatory training trials with sexually receptive females scented with a neutral almond odor. The Unpaired group received 9 copulatory training trials with unscented sexually receptive females. The Naïve group were not given sexual experience. Paired and Unpaired males were given a final test in an open field with two receptive females, one scented and the other unscented, to assess the development of conditioned ejaculatory preference (CEP), which was expressed significantly in the Paired group. Brains from rats in the three groups were then assessed for OT receptor (OTR) or VP1a receptor (VPR) densities within cortical, limbic and hypothalamic structures using autoradiography with selective 125I-labeled receptor ligands. Sexual experience alone increased OTR significantly in the medial preoptic area (mPOA), ventromedial hypothalamus (VMH), and central nucleus of the amygdala (CeA) in both Paired- and Unpaired-trained males compared to sexually Naïve males. No differences were found for experience on VPR densities in any region. These data add to a growing body of evidence that sexual experience alters brain function and processing of sex-related cues, and suggest that enhanced activation of OTRs in the mPOA, VMH, and CeA by conditioned OT release in those regions may underlie CEP in the male rat.

7.
IBRO Neurosci Rep ; 11: 164-174, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34746914

ABSTRACT

Exercise can reduce the incidence of stress-related mental diseases, such as depression and anxiety. Control group was neither exposed to CVMS nor TRE (noCVMS/noTRE). Females were tested and levels of serum17-beta-oestradiol (E2), estrogen receptors α immunoreactive neurons (ERα-IRs), estrogen receptors ß immunoreactive neurons (ERß-IRs) and oxytocin immunoreactive neurons (OT-IRs) were measured. The results showed there's increased anxiety-like behaviors for mice from CVMS/noTRE, CVMS/higher speed TRE (CVMS/HTRE) and noCVMS/HTRE groups when they were put in open field and elevated maze tests. They had lower serum E2 levels than mice from CVMS/low-moderate speed TRE (CVMS/LMTRE), noCVMS/LMTRE and noCVMS/noTRE groups. The three groups of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice had more ERα-IRs and less ERß-IRs in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA), hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). The number of OT-IRs in PVN and SON of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice was also lower than that of mice from CVMS/LMTRE, noCVMS/LMTRE and noCVMS/noTRE groups. Interestingly, CVMS/LMTRE and noCVMS/LMTRE mice were similar to noCVMS/noTRE mice in that they did not show anxiety, while CVMS/HTRE and noCVMS/HTRE mice did not, which were similar to the mice in CVMS/noTRE. We propose that LMTRE instead of HTRE changes the serum concentration of E2. ERß/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behavior in female mice exposed to anxiety-inducing stress conditions.

8.
Neuroscience ; 475: 148-162, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34500018

ABSTRACT

Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.


Subject(s)
Body Temperature , Preoptic Area , Animals , Female , Humans , Lactation , Maternal Behavior , Orexins/metabolism , Preoptic Area/metabolism , Rats , Sleep
9.
Behav Brain Res ; 415: 113520, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34389425

ABSTRACT

This study aimed to provide evidence on estrogen and androgen pathways regulating the Mongolian gerbil's paternal and infanticidal behaviors (Meriones unguiculatus). We analyzed estrogen receptor alpha (ERα) and androgen receptor (AR) distribution in the medial preoptic area (mPOA), the bed nucleus of stria terminalis (BNST), as well as the anterior hypothalamic nucleus (AHN), the ventromedial hypothalamus nucleus (VMH), and the periaqueductal gray area (PAG) nuclei activated when males interact paternally or aggressively with the pups, respectively. Twenty aggressive males towards the pups and 10 paternal were selected through a screen paternal behavior test. Three groups of 10 males each were formed: paternal males (PAT), males with testosterone (T)-induced paternal behavior (T-PAT), and aggressive males (AGG). Male gerbils could interact with a pup for a few minutes, and their brains were removed and dissected for ERα and AR immunoreactivity (ir). The results showed that in T-PAT and PAT males, the number of ERα-ir and AR-ir cells in the mPOA/BNST was significantly higher than in AGG males. In AGG males, the number of ERα-ir and AR-ir cells in the AHN/VMH/PAG was significantly higher than PAT and T-PAT males. This difference in the presence of ERα and AR in nuclei activated in paternal interactions in the Mongolian gerbil supports the idea that these receptors participate in regulating paternal behavior. Also, these results suggest, for the first time, that they could be involved in the infanticidal behavior in this rodent.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Estrogen Receptor alpha/metabolism , Hypothalamus, Anterior/metabolism , Paternal Behavior/physiology , Periaqueductal Gray/metabolism , Preoptic Area/metabolism , Receptors, Androgen/metabolism , Septal Nuclei/metabolism , Animals , Gerbillinae , Male
10.
Brain Sci ; 11(3)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804634

ABSTRACT

Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: "C-Fos Expression", "Lactating Rat", "Medial Preoptic Area Interaction" and "Parental Behavior". Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.

11.
Transl Res ; 232: 150-162, 2021 06.
Article in English | MEDLINE | ID: mdl-33737161

ABSTRACT

Deleterious hyper-inflammation resulting from macrophage activation may aggravate sepsis and lead to lethality. Tumor endothelial marker 1 (TEM1), a type I transmembrane glycoprotein containing six functional domains, has been implicated in cancer and chronic sterile inflammatory disorders. However, the role of TEM1 in acute sepsis remains to be determined. Herein we explored the functional significance of the TEM1 lectin-like domain (TEM1D1) in monocyte/macrophage activation and sepsis using TEM1D1-deleted (TEM1LeD/LeD) transgenic mice and recombinant TEM1D1 (rTEM1D1) protein. Under stimulation with lipopolysaccharides (LPS) or several other toll-like receptor agonists, TEM1LeD/LeD macrophages produced lower levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 than wild-type TEM1wt/wt macrophages. Compared with TEM1wt/wt macrophages, LPS-macrophage binding and intracellular mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-κB activation were suppressed in TEM1LeD/LeD macrophages. In vivo, TEM1D1 deletion improved survival in LPS-challenged mice with reduction of circulating TNF-α and IL-6 and alleviation of lung injury and pulmonary leukocyte accumulation. In contrast, rTEM1D1 could bind to LPS and markedly suppress LPS-macrophage binding, MAPK/NF-κB signaling in macrophages and proinflammatory cytokine production. Treatment with rTEM1D1 improved survival and attenuated circulating TNF-α and IL-6, lung injury and pulmonary accumulation of leukocytes in LPS-challenged mice. These findings demonstrated differential roles for the TEM1 lectin-like domain in macrophages and soluble TEM1 lectin-like domain in sepsis. TEM1 in macrophages mediates LPS-induced inflammation via its lectin-like domain, whereas rTEM1D1 interferes with LPS-induced macrophage activation and sepsis.


Subject(s)
Antigens, CD/physiology , Lectins/chemistry , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Neoplasm Proteins/physiology , Sepsis/etiology , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Antigens, Neoplasm/genetics , Gene Deletion , Humans , Inflammation/chemically induced , Lipopolysaccharides/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasm Proteins/chemistry , Recombinant Proteins/genetics , Sepsis/physiopathology
12.
Neurosci Bull ; 37(2): 166-182, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32888180

ABSTRACT

Despite extensive characterization of sex differences in the medial preoptic area (mPOA) of the hypothalamus, we know surprisingly little about whether or how male and female mPOA neurons differ electrophysiologically, especially in terms of neuronal firing and behavioral pattern generation. In this study, by performing whole-cell patch clamp recordings of the mPOA, we investigated the influences of sex, cell type, and gonadal hormones on the electrophysiological properties of mPOA neurons. Notably, we uncovered significant sex differences in input resistance (male > female) and in the percentage of neurons that displayed post-inhibitory rebound (male > female). Furthermore, we found that the current mediated by the T-type Ca2+ channel (IT), which is known to underlie post-inhibitory rebound, was indeed larger in male mPOA neurons. Thus, we have identified salient electrophysiological properties of mPOA neurons, namely IT and post-inhibitory rebound, that are male-biased and likely contribute to the sexually dimorphic display of behaviors.


Subject(s)
Preoptic Area , Sex Characteristics , Animals , Electrophysiological Phenomena , Female , Male , Mice , Neurons , Patch-Clamp Techniques
13.
Neuroscience Bulletin ; (6): 166-182, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-952013

ABSTRACT

Despite extensive characterization of sex differences in the medial preoptic area (mPOA) of the hypothalamus, we know surprisingly little about whether or how male and female mPOA neurons differ electrophysiologically, especially in terms of neuronal firing and behavioral pattern generation. In this study, by performing whole-cell patch clamp recordings of the mPOA, we investigated the influences of sex, cell type, and gonadal hormones on the electrophysiological properties of mPOA neurons. Notably, we uncovered significant sex differences in input resistance (male > female) and in the percentage of neurons that displayed post-inhibitory rebound (male > female). Furthermore, we found that the current mediated by the T-type Ca

14.
Adv Exp Med Biol ; 1284: 49-62, 2020.
Article in English | MEDLINE | ID: mdl-32852740

ABSTRACT

In mammals, parental care is essential for the survival of the young; therefore, it is vitally important to the propagation of the species. These behaviors, differing between the two sexes, are innate, stereotyped, and are also modified by an individual's reproductive experience. These characteristics suggest that neural mechanisms underlying parental behaviors are genetically hardwired, evolutionarily conserved as well as sexually differentiated and malleable to experiential changes. Classical lesion studies on neural control of parental behaviors, mostly done in rats, date back to the 1950s. Recent developments of new methods and tools in neuroscience, which allow precise targeting and activation/inhibition of specific populations of neurons and their projections to different brain structures, have afforded fresh opportunities to dissect and delineate the detailed neural circuit mechanisms that govern distinct components of parental behaviors in the genetically tractably organism, the laboratory mouse (Mus musculus). In this review, we summarize recent discoveries using modern neurobiological tools within the context of traditional lesion studies. In addition, we discuss interesting cross talk between neural circuits that govern parent care with those that regulate other innate behaviors such as feeding and mating.


Subject(s)
Brain/cytology , Brain/physiology , Maternal Behavior/physiology , Neural Pathways/physiology , Neurons/physiology , Paternal Behavior/physiology , Animals , Mice , Models, Animal
15.
Behav Brain Res ; 385: 112556, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32087184

ABSTRACT

There is significant variability in the immediate behavioral response displayed by inexperienced adult mice when exposed to pups for the first time. The aim of this study was to determine which brain regions were engaged (higher c-Fos-immunoreactivity, c-Fos-ir) when virgin females, that were exposed to pups for 15 or 60 min, displayed full parental behavior (FPB), partial parental behavior (PPB), or non-parental behavior (NPB), or virgin males displayed PPB or infanticidal behavior (IB). The number of c-Fos-ir neurons in the prelimbic cortex (PL) was higher in parental females than in the NPB group (after a 15-min exposure), and the group not exposed to pups (NE). C-Fos expression in the nucleus accumbens (NA) was increased in most groups of females exposed to pups compared to NE. Higher c-Fos-ir was also found in the shell subregion of the NA in infanticidal males, compared to males NE. The cortical (CoA) and medial (MA) amygdala also showed higher c-Fos-ir in parental females compared to NE animals. However, PPB and IB male groups also exhibited higher c-Fos-ir in the CoA and MA compared to the NE group. The expression of c-Fos in the different subregions of medial preoptic area and the ventromedial nucleus of the hypothalamus was not specifically associated with either parental or infanticidal behavior. No brain activation in males was specifically associated with infanticidal behavior. Our results suggest that 15 min of exposure to pups is enough to detect brain regions associated with parental behavior (PL) or pups processing (NA, MA, CoA) in mice. The PL might participate in the immediate onset of parental behavior in virgin females, coordinating and planning its rapid execution.


Subject(s)
Amygdala/metabolism , Maternal Behavior/physiology , Nucleus Accumbens/metabolism , Paternal Behavior/physiology , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Amygdala/physiology , Animals , Animals, Newborn , Behavior, Animal/physiology , Brain/metabolism , Brain/physiology , Female , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/physiology , Prefrontal Cortex/physiology
16.
Horm Behav ; 119: 104653, 2020 03.
Article in English | MEDLINE | ID: mdl-31816282

ABSTRACT

E2 and its alpha receptor (ERα) have an essential role in the regulation of maternal behavior. In dwarf hamster (Phodopus campbelli), E2 facilitates the display of paternal care, and it is possible that ERα is part of the neuroendocrine mechanisms that regulate this behavior. The aim of this study was to analyze the influence of copulation, cohabitation with the pregnant mate and the presence of the pups on paternal behavior, circulating E2 levels and the presence of ERα in the medial preoptic area (mPOA) and medial amygdala (MeA) in dwarf hamsters. Eight males were mated with intact females (IFs), 8 with tubally ligated females (TLFs) and 8 with ovariectomized females (OFs). In males mated with IFs, paternal behavior tests were performed after copulation, halfway through pregnancy and 24 h after the birth of their pups. Males mated with TLFs were subjected to paternal behavior tests at equivalent periods as the males mated with IFs. In males mated with OFs, paternal behavior tests were performed on days 1, 5 and 10 of cohabitation. After the last paternal behavior tests, blood samples were taken for quantification of E2 by radioimmunoassay (RIA), and the brains were dissected to determine ERα immunoreactivity (ir) in the mPOA and MeA. Fathers mated with IFs had higher serum E2 concentrations and more ERα-ir cells in the mPOA than those of males mated with TLFs and OFs. These results suggest that E2 and its ERα may be associated with paternity in the dwarf hamster.


Subject(s)
Corticomedial Nuclear Complex/metabolism , Estradiol/blood , Estrogen Receptor alpha/metabolism , Fathers , Phodopus/physiology , Preoptic Area/metabolism , Animals , Cricetinae , Fathers/psychology , Female , Humans , Male , Maternal Behavior/physiology , Nesting Behavior/physiology , Paternal Behavior/physiology , Phodopus/metabolism , Pregnancy , Reproduction/physiology
17.
Psychopharmacology (Berl) ; 236(12): 3613-3623, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31359118

ABSTRACT

RATIONALE: Male rats trained to associate a neutral odor or rodent jacket on a female with their post-ejaculatory reward state display a preference to ejaculate with females bearing the odor or jacket. This conditioned ejaculatory preference (CEP) can be shifted by systemic administration of the opioid antagonist naloxone (NAL) during training, such that NAL-trained males distribute their ejaculations to females without the cue, relative to saline (SAL)-trained males. OBJECTIVE: The present study examined two brain sites, the medial preoptic area (mPOA) or ventral tegmental area (VTA), where the opioid reward state might be induced. METHODS: Sexually naïve Long-Evans males were implanted with bilateral guide cannula aimed at either site before they underwent multi-ejaculatory conditioning trials at 4-day intervals with sexually receptive females that bore either an almond odor or rodent tethering jacket. Infusions of NAL (1 µl/side) or SAL (1 µl/side) were made prior to each conditioning trial. All males were infused with SAL prior to a final open-field choice test with two sexually receptive females, one scented and the other unscented, or one jacketed and the other unjacketed. RESULTS: Males previously conditioned with SAL in either region showed significant CEP. In contrast, prior infusions of NAL to the mPOA shifted the preference towards the unfamiliar female, whereas prior infusions to the VTA abolished CEP for the odor. Subsequent detection of Fos protein induced by the cue showed that, relative to SAL-treated males, prior experience with NAL in the mPOA suppressed Fos in both the mPOA and VTA, whereas prior experience with NAL in to the VTA suppressed Fos in the VTA alone. CONCLUSIONS: Opioid antagonism in the mPOA produces a state of non-reward whereas in the VTA, it produces a state in which the odor does not acquire incentive properties.


Subject(s)
Ejaculation/drug effects , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Preoptic Area/drug effects , Reward , Ventral Tegmental Area/drug effects , Animals , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Ejaculation/physiology , Female , Infusions, Intraventricular , Male , Motivation/drug effects , Motivation/physiology , Odorants , Preoptic Area/physiology , Rats , Rats, Long-Evans , Smell/drug effects , Smell/physiology , Ventral Tegmental Area/physiology
18.
Front Neuroendocrinol ; 54: 100765, 2019 07.
Article in English | MEDLINE | ID: mdl-31112731

ABSTRACT

During pregnancy, the sequential release of progesterone, 17ß-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Endocrine Disruptors/pharmacology , Gonadal Steroid Hormones/metabolism , Maternal Behavior/physiology , Pregnancy/metabolism , Animals , Behavior, Animal/drug effects , Brain/drug effects , Female , Maternal Behavior/drug effects , Mice , Pregnancy/drug effects , Rats
19.
J Neuroendocrinol ; 31(6): e12715, 2019 06.
Article in English | MEDLINE | ID: mdl-30920021

ABSTRACT

Testosterone is the main endocrine mechanism mediating sexual differentiation of the mammalian brain, although testosterone signalling is complex and important mechanistic questions remain. Notably, the extent to which testosterone acts via androgen receptors (AR) in this process remains unknown and it is also not clear where testosterone acts in the body to produce sexual dimorphisms in neuroanatomy. To address these questions, we used a transgenic mouse model of Cre/loxP-driven AR overexpression in which AR was induced selectively in neural tissue (Nestin-cre) or in all tissues (CMV-cre). We then studied sexually dimorphic features of several well-characterised sexual dimorphisms: calbindin-immunoreactive neurones in the medial preoptic area (CALB-SDN), tyrosine hydroxylase neurones in the anteroventral periventricular nucleus, and vasopressin-immunoreactive neurones originating in the bed nucleus of the stria terminalis and their projections in the lateral septum. We additionally evaluated oestrogen receptor α immunoreactivity in these nuclei. Briefly, we found that global but not neural overexpression of AR resulted in masculinisation of CALB-SDN nucleus volume, cell number and cell size in transgenic females. Furthermore, neural AR overexpression resulted in increased oestrogen receptor α staining in females compared to males in the medial preoptic area. AR overexpression did not affect other measures. Overall, the results of the present study provide support for the hypothesis that androgenic mechanisms external to the nervous system can affect sexual differentiation of the brain.


Subject(s)
Brain/metabolism , Neurons/metabolism , Receptors, Androgen/metabolism , Sex Characteristics , Sex Differentiation/physiology , Animals , Female , Hypothalamus, Anterior/metabolism , Male , Mice, Transgenic , Preoptic Area/metabolism , Septal Nuclei/metabolism
20.
Neurosci Bull ; 35(4): 697-708, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30900143

ABSTRACT

Adult male mice emit highly complex ultrasonic vocalizations (USVs) in response to female conspecifics. Such USVs, thought to facilitate courtship behaviors, are routinely measured as a behavioral index in mouse models of neurodevelopmental and psychiatric disorders such as autism. While the regulation of USVs by genetic factors has been extensively characterized, the neural mechanisms that control USV production remain largely unknown. Here, we report that optogenetic activation of the medial preoptic area (mPOA) elicited the production of USVs that were acoustically similar to courtship USVs in adult mice. Moreover, mPOA vesicular GABA transporter-positive (Vgat +) neurons were more effective at driving USV production than vesicular glutamate transporter 2-positive neurons. Furthermore, ablation of mPOA Vgat+ neurons resulted in altered spectral features and syllable usage of USVs in targeted males. Together, these results demonstrate that the mPOA plays a crucial role in modulating courtship USVs and this may serve as an entry point for future dissection of the neural circuitry underlying USV production.


Subject(s)
Courtship/psychology , Preoptic Area/physiology , Ultrasonics , Vocalization, Animal/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Optogenetics , Vesicular Inhibitory Amino Acid Transport Proteins/antagonists & inhibitors , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL