Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.796
Filter
1.
Naturwissenschaften ; 111(4): 37, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951237

ABSTRACT

Studies of reproductive biology and resources availability to floral visitors by plant species are important to understand the plant-pollinator interactions that drive species adaptation. We aim to understand the relationship between reproduction mechanisms of Deuterocohnia meziana (Bromeliaceae) and pollinators. The species occurs in Bolivia and Paraguay, and it is the only species of the genus found in Brazil, where it is restricted to ironstone outcrops. These areas are currently threatened by the iron mining industry. Additionally, they face risks from fire occurrence and grazing by cattle. We analyzed the floral biology, reproductive system, phenology, and pollination ecology of a natural population of Deuterocohnia meziana, from ironstone outcrops in Brazil. The species exhibits diurnal anthesis, with stigma receptive throughout anthesis, and 77% of pollen viability. Deuterocohnia meziana produces relatively large amounts of nectar, especially early in the morning (32.8 ± 9.4 µl), with a mean sugar concentration of 23.5 (± 3.2) ºBrix. It is self-incompatible with a peak flowering occurring in August (dry season), although flowers are observed continuously throughout the year. The species exhibits two types of inflorescences, young and mature, among which an average of 13.1 and 3.6 flowers open per day, respectively. Hummingbirds and bees are the effective pollinators, although butterflies and ants also visit D. meziana flowers. The species is reliant on exogenous pollen and pollinators for fruit set. The continuous conservation of D. meziana populations and their communities is essential for preserving plant-pollinator mutualism and the floral community adapted to ironstone outcrops.


Subject(s)
Bromeliaceae , Endangered Species , Pollination , Reproduction , Pollination/physiology , Brazil , Bromeliaceae/physiology , Animals , Reproduction/physiology , Flowers/physiology
2.
J Chem Ecol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951422

ABSTRACT

Mating disruption of a flighted spongy moth, Lymantria dispar japonica (Motchulsky)(Lepidoptera: Lymantridae), with a synthetic version of its sex pheromone, (+)-disparlure ([7R,8S] -cis-7,8-epoxy-2- methyloctadecane), was tested in the forests in Japan. Pheromone trap catches and the percentage mating of tethered females were measured in the pheromone-treated and untreated control forests. The attraction of male moths to pheromone traps placed at a height of 1.5 m was significantly disrupted when the pheromone dispensers were placed at 1.5 m height, but many moths were captured in control plots. Mating of tethered females placed at 1.5 m was inhibited entirely, while 44% of females were mated in an untreated control forest. We report the first trial of mating disruption against a flighted spongy moth, and these results suggest that mating disruption with the synthetic sex pheromone appears promising for reducing damage caused by L. dispar japonica.

3.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 321-328, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38952321

ABSTRACT

More than 80% of the world's populations are at risk of vector-borne diseases, with mosquito-borne diseases as a significant global public health problem. Mosquito populations control is critical to interrupting the transmission of mosquito-borne diseases. This review summarizes the physical attributes, smell, vision, touch, and hearing of mosquitoes to unravel the preferences of female mosquitoes, and describes the mechanisms underlying the best male mating by female mosquitoes, so as to provide new insights into management of mosquito-borne diseases.


Subject(s)
Culicidae , Animals , Female , Male , Culicidae/physiology , Sexual Behavior, Animal/physiology , Mosquito Vectors/physiology
4.
Transl Anim Sci ; 8: txae094, 2024.
Article in English | MEDLINE | ID: mdl-38957732

ABSTRACT

In a 10-wk study, alterations in the rate of fertility, egg viability, and hatch parameters of adult geese exposed to different breeding methods were investigated. Twenty-four matured geese (4.0 ±â€…0.45 average weight) were randomly divided into three groups (TNM-natural mating group, TIM-artificial insemination group, TNI-natural mating and insemination group) of two replicates with four geese per replicate in a completely randomized design. Fresh semen collected from six ganders (5.2 ±â€…0.69 average weight) was pooled and used to inseminate the geese in TIM and TN1 at 0.2Ml at insemination times. The geese in TNM and TNI were allowed to mate naturally. Insemination and mating was done at 3 d interval and eggs from each treatment were collected daily. Incubation of eggs was done weekly, candling and transfer to hatcher were done on day 27 and goslings hatched out on day 30. Fertility, early embryo mortality (EEM), mid embryo mortality (MEM), late embryo mortality (LEM), hatch of fertile eggs (HOF), and hatch of set eggs (HOS) were obtained and analyzed using descriptive statistics and ANOVA and means separated using least significant difference test. Geese in TNI had significantly higher fertility (93.33 ±â€…10.97%) than TNM (59.67 ±â€…31.29%) and TIM (83.60 ±â€…17.14%). The EEM was higher in TIM than in the two other groups while the HOF and HOS were higher in TNM and TNI than in TIM. This study suggests that in comparison with TIM, higher fertility, hatchability, and lower embryo mortality can be obtained when geese are inseminated and naturally mated simultaneously.

5.
Sci Rep ; 14(1): 15122, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956289

ABSTRACT

Natalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S. frugiperda. The results showed that the NTL transcript level was expressed in both male and female pupae and both male and female adults in the later stage. It was highly expressed in male pupae, 3-day-old male and female adults, and 5-day-old male adults. In different tissues, the expression level is higher in the male and female adult brain and male testis. Immunohistochemical staining of the brain of S. frugiperda female and male adults revealed that three pairs of brain neurons of S. frugiperda adults of both sexes secreted and expressed NTL. To study the role of NTL in reproductive behaviors, NTL was silenced in S. frugiperda male and female adults by RNA interference (RNAi) technology, the results showed that silencing NTL could significantly affect the sexual activity behavior of the adults, reducing the calling rate of females, the courtship rate of males, and the mating rate. In summary, this study emphasizes the important role of NTL in regulating the mating behavior and sexual activity of S. frugiperda in both male and female adults, potentially laying a foundation to employ NTL as a new insect-specific target to control populations of pest insects.


Subject(s)
Neuropeptides , Sexual Behavior, Animal , Spodoptera , Animals , Spodoptera/genetics , Spodoptera/physiology , Male , Female , Neuropeptides/metabolism , Neuropeptides/genetics , Sexual Behavior, Animal/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Brain/metabolism , RNA Interference , Reproduction
6.
Mol Ecol Resour ; : e13988, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946153

ABSTRACT

Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly. However, it remains unknown whether genetic architecture and composition of the S-locus are maintained among species that share a common origin of heterostyly and subsequently diverged across larger time scales. To address this research gap, we present a chromosome-scale genome assembly of Primula edelbergii, a species that shares the same origin of heterostyly with Primula veris (whose S-locus has been characterized) but diverged from it 18 million years ago. Comparative genomic analyses between these two species allowed us to show, for the first time, that the S-locus can 'jump' (i.e. translocate) between chromosomes maintaining its function in controlling heterostyly. Additionally, we found that four S-locus genes were conserved but reshuffled within the supergene, seemingly without affecting their expression, thus we could not detect changes explaining the lack of self-incompatibility in P. edelbergii. Furthermore, we confirmed that the S-locus is not undergoing genetic degeneration. Finally, we investigated P. edelbergii evolutionary history within Ericales in terms of whole genome duplications and transposable element accumulation. In summary, our work provides a valuable resource for comparative analyses aimed at investigating the genetics of heterostyly and the pivotal role of supergenes in shaping the evolution of complex phenotypes.

7.
Article in English | MEDLINE | ID: mdl-38982618

ABSTRACT

Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.

8.
AoB Plants ; 16(4): plae036, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988683

ABSTRACT

Competition affects mixed-mating strategies by limiting available abiotic or biotic resources such as nutrients, water, space, or pollinators. Cleistogamous species produce closed (cleistogamous, CL), obligately selfed, simultaneously with open (chasmogamous, CH), potentially outcrossed flowers. The effects of intraspecific competition on fitness and cleistogamy variation can range from limiting the production of costly CH flowers because of resource limitation, to favouring CH production because of fitness advantages of outcrossed, CH offspring. Moreover, the effects of competition can be altered when it co-occurs with other environmental variations. We grew plants from seven populations of the ruderal Lamium amplexicaule, originating from different climates and habitats, in a common garden experiment combining drought, interspecific competition, and seasonal variation. All these parameters have been shown to influence the degree of cleistogamy in the species on their own. In spring, competition and drought negatively impacted fitness, but the CL proportion only increased when plants were exposed to both treatments combined. We did not observe the same results in autumn, which can be due to non-adaptive phenotypic variation, or to differences in soil compactness between seasons. The observed responses are largely due to phenotypic plasticity, but we also observed phenotypic differentiation between populations for morphological, phenological, and cleistogamy traits, pointing to the existence of different ecotypes. Our data do not support the hypothesis that CL proportion should decrease when resources are scarce, as plants with reduced growth had relatively low CL proportions. We propose that variation in cleistogamy could be an adaptation to pollinator abundance, or to environment-dependent fitness differences between offspring of selfed and outcrossed seeds, two hypotheses worth further investigation. This opens exciting new possibilities for the study of the maintenance of mixed-mating systems using cleistogamous species as models that combine the effects of inbreeding and reproductive costs.

9.
F1000Res ; 13: 123, 2024.
Article in English | MEDLINE | ID: mdl-38974941

ABSTRACT

Background: Zoos use environmental enrichments, including scents, which may have applications to improve breeding success for taxa, such as lemurs, which rely heavily on olfactory communication. We aimed to develop novel, biologically-relevant scent enrichments to trigger mating behaviours of zoo-housed lemur species, which are critically endangered in the wild and show a low success rate in captive breeding programmes. Methods: We examined anogenital odour secretions, released by female gentle ( Hapalemur alaotrensis) and ruffed ( Varecia variegata) lemurs, using solid-phase microextraction and gas chromatography-mass spectrometry techniques. We identified the key compounds distinguishing the volatile chemical profile of female lemurs during the breeding season and used them to develop species-specific scent enrichments. We then tested the scent enrichments, made up of synthesized mixtures conveying information about female lemur fertility, on unsuccessful breeding pairs of lemurs hosted in European zoos. We evaluated the effects of the newly designed scent enrichments on their target species by combining behavioural observations with faecal endocrinology. Results: We identified and reproduced fertility-specific signals associated with female scents. These scent mixtures triggered male sexual behaviours, including mating, during and after the enrichment condition. We also found effects on faecal testosterone levels, with increased levels after the enrichment condition albeit not statistically significant. Conclusions: Our findings suggest that biologically-relevant scent enrichments may trigger natural species-specific behaviours, with potential implications for conservation breeding of zoo-based endangered lemur species, and highlight that combining more assessment methods may assist with evaluating the impact of environmental enrichments.


Subject(s)
Animals, Zoo , Breeding , Lemur , Odorants , Animals , Animals, Zoo/physiology , Female , Odorants/analysis , Lemur/physiology , Male , Sexual Behavior, Animal/physiology , Lemuridae/physiology , Gas Chromatography-Mass Spectrometry
10.
J Insect Physiol ; 156: 104673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977260

ABSTRACT

In male competition, large and costly ejaculates are advantageous. Prior research on male accessory gland secretions in Plutella xylostella left open questions about how males modulate their mating behaviors and ejaculate composition allocation in response to varying levels of competition. The current study aimed to delve deeper into these unexplored facets. A totally of 928 ejaculate proteins were identified across males exposed to different competition conditions. Notably, males courting under non-, low-, and high-competition scenarios exhibited 867, 635, and 858 ejaculate proteins, respectively. Approximately 10% of these ejaculate proteins displayed variations that aligned with changes in competition intensity. Subsequent analyses focused on the proteins transferred to females, revealing that 44% of ejaculate proteins were transferred, with 37 proteins exhibiting differential expression. Functional analyses uncovered their crucial roles in sperm maturation, motility, and capacitation. Our findings reveal adaptive adjustments in ejaculate protein abundance and transmission in P. xylostella as a response to varying competition levels. Moreover, fluorescent sperm labeling indicated higher sperm transfer during low competition correlated with shorter sperm length. Furthermore, evidence suggests that males shorten their courtship duration and extend their mating duration when faced with competition. These results illustrate how competition drives ejaculate investment and behavioral plasticity, offering valuable insights for advancements in assisted reproductive technologies and pest management strategies.


Subject(s)
Moths , Sexual Behavior, Animal , Animals , Male , Moths/physiology , Moths/metabolism , Sexual Behavior, Animal/physiology , Insect Proteins/metabolism , Insect Proteins/genetics , Proteome , Female , Competitive Behavior , Spermatozoa/physiology , Spermatozoa/metabolism , Semen/metabolism , Semen/chemistry , Semen/physiology
11.
Front Plant Sci ; 15: 1379730, 2024.
Article in English | MEDLINE | ID: mdl-39045597

ABSTRACT

Inbreeding depression (ID) is a major selective force during mating system evolution primarily contributed by highly to partially recessive deleterious mutations. Theories suggest that transient genetic association with fitness alleles can be important in affecting the evolution of alleles that modify the selfing rate during its sweep. Nevertheless, empirical tests often focus on the pre-existing genetic association between selfing rate and ID maintained under mutation-selection balance. Therefore, how this standing genetic association is affected by key factors and its impacts on the evolution of selfing remain unclear. I show that as the selection coefficient of deleterious mutations increases, the association between selfing rate and ID declines from positive to negative. These results predict that association between selfing and ID tends to be negative in populations with low selfing rates, while positive in highly selfing populations. Using population genetic and quantitative genetic models, I show that standing genetic associations between selfing rate and fitness alleles can significantly impact the evolution of the mean selfing rate of a population. I present better metrics of population-level ID, which can be calculated based on the correlation coefficient between individual selfing rate and the fitness of selfed and outcrossed offspring.

12.
Proc Biol Sci ; 291(2027): 20240672, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39045689

ABSTRACT

Speciation is a fundamental evolutionary process but the genetic changes accompanying speciation are difficult to determine since true species do not produce viable and fertile offspring. Partially reproductively isolated incipient species are useful for assessing genetic changes that occur prior to speciation. Drosophila melanogaster from Zimbabwe, Africa are partially sexually isolated from other D. melanogaster populations whose males have poor mating success with Zimbabwe females. We used the North American D. melanogaster Genetic Reference Panel (DGRP) to show that there is significant genetic variation in mating success of DGRP males with Zimbabwe females, to map genetic variants and genes associated with variation in mating success and to determine whether mating success to Zimbabwe females is associated with other quantitative traits previously measured in the DGRP. Incipient sexual isolation is highly polygenic and associated with the common African inversion In(3R)K and the amount of the sex pheromone 5,9-heptacosadiene in DGRP females. We functionally validated the effect of eight candidate genes using RNA interference to provide testable hypotheses for future studies investigating the molecular genetic basis of incipient sexual isolation in D. melanogaster.


Subject(s)
Drosophila melanogaster , Reproductive Isolation , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Male , Female , Zimbabwe , Genetic Speciation , Genetic Variation , Sexual Behavior, Animal , Sex Attractants
13.
Early Hum Dev ; 195: 106073, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39043080

ABSTRACT

This study examines the effects of birth month on reproduction and mating behavior using historical and contemporary census data from 1820 to 1970. The research examines the effect of birth month on the number of children for women and their male spouses, finding a monthly cycle for both men and women. In addition, the study examines whether birth month influences whether a person has ever been married. In support of previous research, we find clear birth month effects on the number of children for both women and their spouses, while the time series of ever being married shows a 60-month and a 10-year cycle, the latter possibly related to the solar cycle. Although the effects are small, both results, based on a large and representative dataset, indicate the importance of early life factors on mating and reproduction.

14.
Vet Anim Sci ; 25: 100373, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39036417

ABSTRACT

Mating in animal communities must be managed in a way that assures the performance increase in the progenies without increasing the rate of inbreeding. It has currently become possible to identify millions of single nucleotide polymorphisms (SNPs), and it is feasible to select animals based on genome-wide marker profiles. This study aimed to evaluate the impact of five mating designs among individuals (random, positive and negative assortative, minimized and maximized inbreeding) on genomic prediction accuracy. The choice of these five particular mating designs provides a thorough analysis of the way genetic diversity, relatedness, inbreeding, and biological conditions influence the accuracy of genomic predictions. Utilizing a stochastic simulation technique, various marker and quantitative trait loci (QTL) densities were taken into account. The heritabilities of a simulated trait were 0.05, 0.30, and 0.60. A validation population that only had genotypic records was taken into consideration, and a reference population that had both genotypic and phenotypic records was considered for every simulation scenario. By measuring the correlation between estimated and true breeding values, the prediction accuracy was calculated. Computing the regression of true genomic breeding value on estimated genomic breeding value allowed for the examination of prediction bias. The scenario with a positive assortative mating design had the highest accuracy of genomic prediction (0.733 ± 0.003 to 0.966 ± 0.001). In a case of negative assortative mating, the genomic evaluation's accuracy was lowest (0.680 ± 0.011 to 0.899 ± 0.003). Applying the positive assortative mating design resulted in the unbiased regression coefficients of true genomic breeding value on estimated genomic breeding value. Based on the current results, it is suggested to implement positive assortative mating in genomic evaluation programs to obtain unbiased genomic predictions with greater accuracy. This study implies that animal breeding programs can improve offspring performance without compromising genetic health by carefully managing mating strategies based on genetic diversity, relatedness, and inbreeding levels. To maximize breeding results and ensure long-term genetic improvement in animal populations, this study highlights the importance of considering different mating designs when evaluating genomic information. When incorporating positive assortative mating or other mating schemes into genomic evaluation programs, it is critical to consider the complex relationship between gene interactions, environmental influences, and genetic drift to ensure the stability and effectiveness of breeding efforts. Further research and comprehensive analyzes are needed to fully understand the impact of these factors and their possible complex interactions on the accuracy of genomic prediction and to develop strategies that optimize breeding outcomes in animal populations.

15.
Peptides ; 179: 171270, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969236

ABSTRACT

The neurohormones oxytocin (OT) and arginine vasopressin (AVP) are involved in social behaviors and psychiatric conditions. However, more research on nonhuman primates with complex social behaviors is needed. We studied two closely-related primate species with divergent social and mating systems; hamadryas baboons (Papio hamadryas, n=38 individuals) and anubis baboons (Papio anubis, n=46). We measured OT in cerebrospinal fluid (CSF, n=75), plasma (n=81) and urine (n=77), and AVP in CSF (n=45), and we collected over 250 hours of focal behavioral observations. Using Bayesian multivariate models, we found no clear species difference in hormone levels; the strongest support was for hamadryas having higher CSF OT levels than anubis (posterior probability [PP] for females = 0.75, males = 0.84). Looking at nine specific behaviors, OT was associated with affiliative behaviors (approach, proximity, grooming, PP ∼ 0.85 - 1.00), albeit inconsistently across sources of measurement (CSF, plasma, and urine, which were uncorrelated with each other). Most behaviors had low repeatability (R ∼ 0 - 0.2), i.e. they did not exhibit stable between-individual differences (or "personality"), and different behaviors did not neatly coalesce into higher-order factors (or "behavioral syndromes"), which cautions against the use of aggregate behavioral measures and highlights the need to establish stable behavioral profiles when testing associations with baseline hormone levels. In sum, we found some associations between peptides and social behavior, but also many null results, OT levels from different sources were uncorrelated, and our behavioral measures did not indicate clear individual differences in sociability.

16.
Elife ; 122024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008352

ABSTRACT

The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener's internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.


Subject(s)
Dopamine , Emotions , Vocalization, Animal , Animals , Male , Female , Vocalization, Animal/physiology , Mice , Dopamine/metabolism , Emotions/physiology , Acetylcholine/metabolism , Amygdala/metabolism , Amygdala/physiology , Behavior, Animal/physiology , Sexual Behavior, Animal/physiology , Mice, Inbred C57BL
17.
PeerJ ; 12: e17648, 2024.
Article in English | MEDLINE | ID: mdl-39006009

ABSTRACT

The rapid degeneration of Cordyceps militaris strains during subculture represents a bottleneck problem that affects production stability. This study explored the mechanism underlying this degeneration in three production and three wild-type strains of Cordyceps militaris, isolating single-conidium strains from each. The effects of subculturing on fructification in both original and single mating-type strains were compared. Changes in the ratio of the two mating types were analyzed in both original and degenerated strains. Based on these findings, the two mating strains were paired in different ratios to determine their effects on fruiting. The resulting five strains were heterokaryotic strains with both MAT1-1 and MAT1-2 mating-type genes. Strain jb-2 was a single mating type (MAT1-1) mutant strain that produced stable fruiting bodies but failed to produce ascospores. It was found that the loss of or imbalance in mating types was the main reason for the rapid degeneration of fruiting traits during subculture and that this occurred randomly in the MAT1-1 and MAT1-2 types. The strains differed significantly in their stability during subculture. Fruiting was stable in the single mating-type Jb-2 strain, and the eleventh-generation fruited normally. There were differences in yield between the production and wild strains after inoculation with spawn containing different proportions of mating types. The production strain was more stable when inoculated with strains with mating-type ratios of 1:9 to 9:1 without affecting the yield. However, the yield of the wild-type strain xf-1 was positively correlated with the proportion of the MAT1-2 type, while the other two strains showed no correlations. Subculturing single mating-type mycelia separately and mixing them before production effectively mitigated degeneration during subculture. For Cordyceps militaris breeding, selecting strains containing both mating types, which are insensitive to the proportion of mating-type genes, enhanced stability in subculture and reduced the risk of mating-type loss. Direct breeding of specific single-mating type strains to induce fruiting is thus an effective breeding strategy.


Subject(s)
Cordyceps , Genes, Mating Type, Fungal , Cordyceps/genetics , Genes, Mating Type, Fungal/genetics , Fruiting Bodies, Fungal
18.
Am J Bot ; 111(7): e16377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010307

ABSTRACT

PREMISE: Evolution of cross-pollination efficiency depends on the genetic variation of flower traits, the pollen vector, and flower trait matching between pollen donors and recipients. Trait matching has been almost unexplored among nonheterostylous species, and we examined whether the match of anther length in pollen donors and stigma length in pollen recipients influences the efficiency of cross-pollination. To explore potential constraints for evolutionary response, we also quantified genetic variation and covariation among sepal length, petal length and width, stamen length, style length, and herkogamy. METHODS: We created 58 experimental arrays of Turnera velutina that varied in the extent of mismatch in the position of anthers and stigmas between single-flowered plants. Genetic variation and correlations among flower traits were estimated under greenhouse conditions. RESULTS: Style length, but not herkogamy, influenced the efficiency of cross-pollination. Plants with stamen length that matched the style length of other plants were more efficient pollen donors, whereas those with the style protruding above the stamens of other plants were more efficient pollen recipients. Significant broad-sense heritability (0.22 > hB 2 < 0.42) and moderate genetic correlations (0.33 > r < 0.85) among floral traits were detected. CONCLUSIONS: Our results demonstrated that anther-stigma mismatch between flowers contributed to variation in the efficiency of cross-pollination. The genetic correlations between stamen length and other floral traits suggests that any change in cross-pollination efficiency would be driven by changes in style rather than in stamen length.


Subject(s)
Flowers , Pollen , Pollination , Flowers/physiology , Flowers/anatomy & histology , Flowers/genetics , Pollen/physiology , Pollen/genetics , Genetic Variation , Phenotype
19.
Comput Biol Chem ; 112: 108147, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39033733

ABSTRACT

The development of analytical methods for Genome-wide Association Studies (GWAS) has outpaced the evolution of simulation techniques and pipelines. This disparity underscores the importance of innovative simulation methods that can keep pace with the rapidly increasing scale of GWAS. The median sample size of GWAS over the past ten years has exceeded 50,000 individuals, a trend that emphasizes the need for simulation tools capable of generating data on a similar or larger scale. This paper introduces a novel method, the small-group originating (SGO) model, utilizing the SLiM software for simulating individual-level GWAS data. Our standardized protocol facilitates the generation of tens of thousands of pseudo-individuals with millions of variants from small (30-90) open-access datasets. SGO stands out, especially when compared to the widely-used resampling method in HapGen, showcasing superior simulation efficiency for large sample sizes (> 13,000) of unrelated individuals. This capability is particularly relevant given the current trajectory towards larger GWAS, necessitating tools that can simulate datasets reflective of this growth. Additionally, SGO provides customization options and can model dynamic life cycles and mating across generations, positioning it as a highly promising alternative for GWAS simulations. In a case study, sensitivity analyses of chromosome-level principal component analysis and kinship coefficient estimation were conducted. The results highlighted the poor robustness of chromosome-level quality control (QC) indexes and the uneven distribution of population structure across chromosomes and ancestries, advocating for the caution against relying solely on chromosome-level QC statistics. With its flexible and efficient approach to generating pseudo GWAS data, our standardized SGO protocol emerges as a crucial asset for method development, power analysis, and benchmarking in GWAS research. It is especially vital in the context of accommodating the demands for large-scale simulations, aligning with the current and future scale of GWAS.

20.
J Evol Biol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023119

ABSTRACT

The features of the physical environment set the stage upon which sexual selection operates, and consequently can have a significant impact on variation in realized individual fitness, and influence a population's evolutionary trajectory. This phenomenon has been explored empirically in several studies using fruit flies (Drosophila melanogaster) which have found that changing the spatial complexity of the mating environment influenced male-female interaction dynamics, (re)mating rates and realized female fecundities. However, these studies did not explore mating patterns, which can dramatically alter the genetic composition of the next generation, and frequently only compared a single, small "simple" environment to a single larger "complex" environment. While these studies have shown that broadly changing the characteristics of the environment can have big effects on reproductive dynamics, the plasticity of this outcome to more subtle changes has not been extensively explored. Our study set out to compare patterns of mating and courtship between large- and small-bodied males and females, and female fecundities in both a simple environment and two distinctly different spatially-complex environments. We found that realized offspring production patterns differed dramatically between all three environments, indicating that the effects of increasing spatial complexity on mating outcomes are sensitive to the specific type of environmental complexity. Furthermore, we observed female fecundities were higher for flies in both complex environments compared those in the simple environment, supporting its role as a mediator of sexual conflict. Together, these results show that the union of gametes within a population can be greatly influenced by the specific spatial features of the environment and that while some outcomes of increased environmental complexity are likely generalizable, other phenomena like mating patterns and courtship rates may vary from one complex environment to another.

SELECTION OF CITATIONS
SEARCH DETAIL