Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
J Am Heart Assoc ; 13(14): e034194, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38989835

ABSTRACT

BACKGROUND: Biomarkers simplifying the diagnostic workup by discriminating between non-ST-segment-elevation myocardial infarction (NSTEMI) and infarct-like myocarditis are an unmet clinical need. METHODS AND RESULTS: A total of 105 subjects were categorized into groups as follows: ST-segment-elevation myocardial infarction (n=36), NSTEMI (n=22), infarct-like myocarditis (n=19), cardiomyopathy-like myocarditis (n=18), and healthy control (n=10). All subjects underwent cardiac magnetic resonance imaging, and serum concentrations of matrix metalloproteinase-1 (MMP-1) and procollagen type I carboxy terminal propeptide (PICP) were measured. Biomarker concentrations in subjects presenting with acute coronary syndrome and non-ST-segment-elevation, for example NSTEMI or infarct-like myocarditis, categorized as the non-ST-segment-elevation acute coronary syndrome-like cohort, were of particular interest for this study. Compared with healthy controls, subjects with myocarditis had higher serum concentrations of MMP-1 and PICP, while no difference was observed in individuals with myocardial infarction. In the non-ST-segment-elevation acute coronary syndrome-like cohort, MMP-1 concentrations discriminated infarct-like myocarditis and NSTEMI with an area under the receiver operating characteristic curve (AUC) of 0.95 (95% CI, 0.89-1.00), whereas high-sensitivity cardiac troponin T performed inferiorly (AUC, 0.74 [95% CI, 0.58-0.90]; P=0.012). Application of an optimal MMP-1 cutoff had 94.4% sensitivity (95% CI, 72.7%-99.9%) and 90.9% specificity (95% CI, 70.8%-98.9%) for the diagnosis of infarct-like myocarditis in this cohort. The AUC of PICP in this context was 0.82 (95% CI, 0.68-0.97). As assessed by likelihood ratio tests, incorporating MMP-1 or PICP with age and C-reactive protein into composite prediction models enhanced their diagnostic performance. CONCLUSIONS: MMP-1 and PICP could potentially be useful biomarkers for differentiating between NSTEMI and infarct-like myocarditis in individuals with non-ST-segment-elevation acute coronary syndrome-like presentation, though further research is needed to validate their clinical applicability.


Subject(s)
Biomarkers , Matrix Metalloproteinase 1 , Myocarditis , Non-ST Elevated Myocardial Infarction , Peptide Fragments , Procollagen , Humans , Male , Female , Biomarkers/blood , Middle Aged , Matrix Metalloproteinase 1/blood , Non-ST Elevated Myocardial Infarction/blood , Non-ST Elevated Myocardial Infarction/diagnosis , Procollagen/blood , Peptide Fragments/blood , Myocarditis/blood , Myocarditis/diagnosis , Diagnosis, Differential , Aged , Case-Control Studies , Adult , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/methods , ROC Curve
2.
Sci Rep ; 14(1): 16897, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043893

ABSTRACT

The chemokine (CCL)-chemokine receptor (CCR2) interaction, importantly CCL2-CCR2, involved in the intrahepatic recruitment of monocytes upon liver injury promotes liver fibrosis. CCL2-CCR2 antagonism using Cenicriviroc (CVC) showed promising results in several preclinical studies. Unfortunately, CVC failed in phase III clinical trials due to lack of efficacy to treat liver fibrosis. Lack of efficacy could be attributed to the fact that macrophages are also involved in disease resolution by secreting matrix metalloproteinases (MMPs) to degrade extracellular matrix (ECM), thereby inhibiting hepatic stellate cells (HSCs) activation. HSCs are the key pathogenic cell types in liver fibrosis that secrete excessive amounts of ECM causing liver stiffening and liver dysfunction. Knowing the detrimental role of intrahepatic monocyte recruitment, ECM, and HSCs activation during liver injury, we hypothesize that combining CVC and MMP (MMP1) could reverse liver fibrosis. We evaluated the effects of CVC, MMP1 and CVC + MMP1 in vitro and in vivo in CCl4-induced liver injury mouse model. We observed that CVC + MMP1 inhibited macrophage migration, and TGF-ß induced collagen-I expression in fibroblasts in vitro. In vivo, MMP1 + CVC significantly inhibited normalized liver weights, and improved liver function without any adverse effects. Moreover, MMP1 + CVC inhibited monocyte infiltration and liver inflammation as confirmed by F4/80 and CD11b staining, and TNFα gene expression. MMP1 + CVC also ameliorated liver fibrogenesis via inhibiting HSCs activation as assessed by collagen-I staining and collagen-I and α-SMA mRNA expression. In conclusion, we demonstrated that a combination therapeutic approach by combining CVC and MMP1 to inhibit intrahepatic monocyte recruitment and increasing collagen degradation respectively ameliorate liver inflammation and fibrosis.


Subject(s)
Extracellular Matrix , Hepatic Stellate Cells , Liver Cirrhosis , Matrix Metalloproteinase 1 , Monocytes , Animals , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Monocytes/metabolism , Monocytes/drug effects , Extracellular Matrix/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Male , Mice, Inbred C57BL , Carbon Tetrachloride , Disease Models, Animal , Macrophages/metabolism , Macrophages/drug effects , Humans , Cell Movement/drug effects , Drug Synergism , Imidazoles , Sulfoxides
3.
J Pharm Bioallied Sci ; 16(Suppl 2): S1080-S1083, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882751

ABSTRACT

Matrix metalloproteinase-1 (MMP-1) plays a pivotal role in the pathogenesis of periodontal diseases, particularly periodontitis, by virtue of its collagenolytic activity targeting collagen type I, the primary component of periodontal tissues. This review abstract elucidates the intricate involvement of MMP-1 in periodontal tissue homeostasis and its dysregulation in disease states. Elevated MMP-1 levels, observed in gingival tissues and crevicular fluid of individuals with periodontitis, correlate with the degradation of collagen fibers within the periodontium. This degradation contributes to the detachment of teeth from surrounding tissues and exacerbates alveolar bone resorption, hallmark features of periodontal breakdown. Therapeutically, targeting MMP-1 activity emerges as a promising strategy, prompting ongoing research into MMP inhibitors and host modulation therapies. Understanding MMP-1's nuanced role in periodontal diseases paves the way for personalized treatment approaches and holds promise in reshaping periodontal disease management for improved patient outcomes and periodontal health.

4.
Curr Issues Mol Biol ; 46(3): 2701-2712, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38534786

ABSTRACT

Inflammation and collagen-degrading enzymes' overexpression promote collagen decomposition, which affects the structural integrity of the extracellular matrix. The polysaccharide and peptide extracts of the green alga Caulerpa microphysa (C. microphysa) have been proven to have anti-inflammatory, wound healing, and antioxidant effects in vivo and in vitro. However, the biological properties of the non-water-soluble components of C. microphysa are still unknown. In the present study, we demonstrated the higher effective anti-inflammatory functions of C. microphysa ethyl acetate (EA) extract than water extract up to 16-30% in LPS-induced HaCaT cells, including reducing the production of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor-α (TNF-α). Furthermore, the excellent collagen homeostasis effects from C. microphysa were proven by suppressing the matrix metalloproteinase-1 (MMP-1) secretion, enhancing type 1 procollagen and collagen expressions dose-dependently in WS1 cells. Moreover, using UHPLC-QTOF-MS analysis, four terpenoids, siphonaxanthin, caulerpenyne, caulerpal A, and caulerpal B, were identified and may be involved in the superior collagen homeostasis and anti-inflammatory effects of the C. microphysa EA extract.

5.
In Vivo ; 38(1): 365-371, 2024.
Article in English | MEDLINE | ID: mdl-38148093

ABSTRACT

BACKGROUND/AIM: Matrix metalloproteinase-1 (MMP-1) expression has been documented as an influential contributor to the intricate milieu of allergic airway inflammation, tissue remodeling, and the exacerbation of asthma's severity. However, the genetic role underlying MMP-1 in the context of asthma has remained enigmatic, with its full implications yet to be unveiled. Considering this, our research was designed to investigate the association of MMP-1 -1607 rs1799750 and the propensity for asthma severity. PATIENTS AND METHODS: As a case-control investigation, our study enrolled 198 individuals diagnosed with asthma and age- and sex-matched 453 non-asthmatic controls. The genotypes of MMP-1 rs1799750 were determined utilizing the polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS: The frequency distributions of 2G/2G, 1G/2G and 1G/1G genotypes at MMP-1 rs1799750 were 49, 42.9, and 8.1%, respectively, among the patients with asthma. This pattern was not different from that of controls (43.7, 46.8, and 9.5%, respectively) (p for trend=0.4486). The allelic frequency pertaining to the variant 1G allele within the asthma group was 29.5%, with a non-significant disparity compared to the 32.9% in the control group (p=0.2596). Noticeably, there was a positive association between MMP-1 rs1799750 2G/1G and 1G/1G genotypes with asthma severity (p=0.0060). CONCLUSION: Our research indicated that the presence of MMP-1 rs1799750 1G allele might not be the sole arbiter of an individual's susceptibility to asthma, yet its potential to function as a discerning prognostic marker for the severity of asthma emerged as a noteworthy finding deserving attention and further exploration.


Subject(s)
Asthma , Matrix Metalloproteinase 1 , Humans , Asthma/genetics , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , Matrix Metalloproteinase 1/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide
6.
Laryngoscope Investig Otolaryngol ; 8(6): 1547-1556, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130271

ABSTRACT

Objectives: This study aimed to investigate the association between salivary matrix metalloproteinase-1 (MMP-1) and clinicopathological parameters of oral cavity squamous cell carcinoma (OSCC) and compare the prognostic efficacy of salivary MMP-1 and other established circulating markers for OSCC. Methods: Saliva specimens from 479 OSCC subjects were examined using an enzyme-linked immunosorbent assay. The area under the curve (AUC) values of salivary MMP-1 and other markers were calculated, and survival analyses were conducted using Kaplan-Meier and multivariate regression methods. Results: Salivary MMP-1 showed good discrimination in predicting overall survival, with an AUC of 0.638, which was significantly higher than that of albumin (0.530, p = .021) and Charlson comorbidity index (0.568, p = .048) and comparable with neutrophil-to-lymphocyte ratio (0.620, p = .987), platelet-to-lymphocyte ratio (0.575, p = .125), and squamous cell carcinoma antigen (0.609, p = .605). Elevated levels of salivary MMP-1 were significantly associated with higher pT classification, pN classification, overall pathological stage, positive extranodal extension, tumor differentiation, positive lymphovascular invasion, positive perineural invasion, and tumor depth (p all <.05). Multivariate analyses indicated that a higher level of salivary MMP-1 (≥2060.0 pg/mL) was an independent predictive factor of poorer overall survival (adjusted hazard ratio: 1.421 [95% confidential interval: 1.014-1.989], p = .041). Conclusion: The study found that the salivary MMP-1 level was significantly associated with many adverse clinicopathological parameters of OSCC. In OSCC, it was found to have superior efficacy in predicting prognosis and was an independent prognostic factor of post-treatment outcome. Level of evidence: 3.

7.
Acta Med Indones ; 55(3): 261-268, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37915157

ABSTRACT

BACKGROUND: There are correlations between tumor staging, lymph node involvement, and patient survival in Nasopharyngeal cancer (NPC) which is one of the most common types of cancer in Indonesia.  The inflammation process plays a role in tumor progression over the long term and this marked by increased proinflammatory cytokine and gene overexpression. This study aims to identify differentially expressed genes (DEGs) in NPC using T and N staging. METHODS: This is a cross-sectional study of NPC patients in Cipto Mangunkusumo, Jakarta, between 2018 and 2022. DEGs were identified based on the amount of mRNA detected on paraffin blocks with a 1.5- to -1.5-fold change and an adjusted p-value of <0.05. RESULTS: We included 48 subjects. The mean age of subjects was 47.75 (10.48) years, and most were male (77.1%). Non-keratinized squamous cell carcinoma was the most common histopathology type. Differences in the tumor size of the T4 and non-T4 in metastatic (33.3%) group when compared to the non-metastatic (37.5%) group were insignificant (p = 0.763). The proportion of N3 subjects in the metastatic vs non-metastatic group was different significantly (83.3% vs. 50%, p = 0.030). Gene expression analysis showed that C-X-C motif ligand 8 (CXCL8), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-1 (MMP2), and fibronectin-1 (FN1) genes of the T4 and non-T4 group to be different significantly. CONCLUSION: There was significant finding in the N3 subjects of the metastatic and non-metastatic groups. The DEGs of CXCL8, MMP1, MMP2, and FN1 were statistically significant in the T4 when compared to the non-T4 group.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Male , Middle Aged , Female , Nasopharyngeal Neoplasms/genetics , Matrix Metalloproteinase 1/genetics , Cross-Sectional Studies , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Nasopharyngeal Carcinoma/genetics , Gene Expression
8.
Health Sci Rep ; 6(10): e1607, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37841939

ABSTRACT

Background and Aims: Breast cancer is a multifactorial malignancy with different clinicopathological and molecular characteristics. It is the most frequent cancer in women in terms of both incidence and mortality. Matrix metallopeptidase 1 or MMP1 is a zinc-dependent endopeptidase associated with several physiological processes through the modification of the extracellular matrix and tumor microenvironment. However, previous results did not suggest any concluding remarks on the correlation between MMP1 gene polymorphisms and the risk of breast cancer. Methods: A comprehensive literature search was performed in PubMed database to retrieve relevant articles and extract data from suitable ones. The literature written only in English was selected for this review. Results: A total of 26 articles were included in the present narrative review. From the available studies, it is observed that MMP1 is upregulated in breast cancer tissues and found to be correlated with metastasis and invasion. The expression of MMP1 gene is mediated by numerous factors, including polymorphisms which act as a potential risk factor for the progression of breast cancer. To establish the correlation between genetic polymorphisms in MMP1 and the risk of breast cancer, several case-control studies, as well as genetic analyses, have been carried out in different ethnicities. The association of genetic polymorphisms in MMP1 with the risk and survival of breast cancer in different populations has been reviewed in this study. Moreover, the structural domain of MMP1 and the role of MMP1 in breast cancer metastasis and invasion are also discussed which will help to understand the potential impact of MMP1 as a genetic biomarker. Conclusions: This review provides an overview of the MMP1 gene polymorphisms in breast cancer. However, we recommend future studies concentrating on combined analysis of multiple SNPs, gene-gene interactions, and analysis of epigenetics, proteomics, and posttranscriptional modifications that will provide the best outcome.

9.
Photodermatol Photoimmunol Photomed ; 39(6): 582-588, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37337400

ABSTRACT

BACKGROUND: We previously reported that the level of mitochondrial ubiquitin ligase (MITOL) protein in fibroblasts was decreased by UVA and that the knock-down (KD) of MITOL increased the secretion of matrix metalloprotease-1 (MMP-1) by fibroblasts. A recent study reported that MITOL suppresses endoplasmic reticulum (ER) stress by stabilizing the interaction between ER and mitochondria (MT) through the ubiquitination of mitofusin 2. These facts suggest that a decrease of MITOL would increase the secretion of MMP-1 through ER stress, but the detailed mechanism of that process in dermal fibroblasts remains unclear. Thus, this study was conducted to clarify the involvement of ER stress in the oversecretion of MMP-1 induced by the decreased MT quality caused by MITOL-KD. METHODS: MITOL-KD normal human dermal fibroblast (NHDFs) were prepared by treating them with MITOL-small interfering RNA, after which their MMP-1 protein levels were measured. ER stress in NHDFs was evaluated by measuring the mRNA levels of spliced X-box binding protein 1 (sXBP1) and the protein levels of inositol-requiring enzyme 1α (IRE1α). RESULTS: MITOL-KD NHDFs enhanced the secretion of MMP-1 via interleukin-6 (IL-6) elicited by the activation of nuclear factor-kappa B (NF-κB). The secretion of MMP-1 could be abrogated by a neutralizing IL-6 antibody and by JSH23, which is an inhibitor of NF-κB activation. Furthermore, MITOL-KD NHDFs as well as UVA-irradiated NHDFs showed increased ER stress levels. In addition, tunicamycin, which is an inducer of ER stress, also increased MMP-1 secretion. CONCLUSION: These results suggested that the decrease of MITOL caused the oversecretion of MMP-1 via NF-κB-IL-6 signaling through the activation of ER stress in fibroblasts.


Subject(s)
Matrix Metalloproteinase 1 , NF-kappa B , Humans , Endoribonucleases/metabolism , Fibroblasts/metabolism , Interleukin-6 , Ligases/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitins/metabolism
10.
Acta Biomater ; 166: 454-469, 2023 08.
Article in English | MEDLINE | ID: mdl-37230438

ABSTRACT

Stem cell therapy has emerged as a promising regenerative medicine strategy but is limited by poor cell survival, leading to low therapeutic outcomes. We developed cell spheroid therapeutics to overcome this limitation. We utilized solid-phase FGF2 to form functionally enhanced cell spheroid-adipose derived (FECS-Ad), a type of cell spheroid that preconditions cells with intrinsic hypoxia to increase the survival of transplanted cells. We demonstrated an increase in hypoxia-inducible factor 1-alpha (HIF-1α) levels in FECS-Ad, which led to the upregulation of tissue inhibitor of metalloproteinase 1 (TIMP1). TIMP1 enhanced the survival of FECS-Ad, presumably through the CD63/FAK/Akt/Bcl2 anti-apoptotic signaling pathway. Cell viability of transplanted FECS-Ad was reduced by TIMP1 knockdown in an in vitro collagen gel block and a mouse model of critical limb ischemia (CLI). TIMP1 knockdown in FECS-Ad inhibited angiogenesis and muscle regeneration induced by FECS-Ad transplanted into ischemic mouse tissue. Genetic overexpression of TIMP1 in FECS-Ad further promoted the survival and therapeutic efficacy of transplanted FECS-Ad. Collectively, we suggest that TIMP1 acts as a key survival factor to improve the survival of transplanted stem cell spheroids, which provides scientific evidence for enhanced therapeutic efficacy of stem cell spheroids, and FECS-Ad as a potential therapeutic agent to treat CLI. STATEMENT OF SIGNIFICANCE: We used FGF2-tethered substrate platform to form adipose-derived stem cell spheroids, as we named as functionally enhanced cell spheroid-adipose derived (FECS-Ad). In this paper, we showed that intrinsic hypoxia of spheroids upregulated expression of HIF-1α, which in turn upregulated expression of TIMP1. Our paper highlights TIMP1 as a key survival factor to improve survival of transplanted stem cell spheroids. We believe that our study has a very strong scientific impact as extending transplantation efficiency is essential for successful stem cell therapy.


Subject(s)
Fibroblast Growth Factor 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Mice , Spheroids, Cellular , Stem Cell Transplantation , Cell Survival
11.
J Clin Med ; 12(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048555

ABSTRACT

Matrix metalloproteinase-1 (MMP-1) is a zinc-containing endopeptidase that degrades dermal collagen and other extracellular matrix molecules. It is recognized as one of the most important indicators of cellular senescence and age-related skin changes. Here, we introduced a novel MMP-1 peptide nucleic acid (PNA) derivative-PNA-20 carboxyethyl fluorene (CEF)-which can interact with and consequently silence the MMP-1 gene sequence. The investigation on the efficacy of PNA-20 CEF in MMP-1 silencing in human dermal fibroblasts revealed significantly decreased expression of MMP-1 at both gene and protein levels. Treatment with PNA-20 CEF showed significantly increased expression of collagen I protein, indicating its potential role in preventing the degradation of collagen I and consequently combating the skin aging process. Its topical application on 3D human skin tissue showed successful absorption into the epidermis and the upper dermis. Furthermore, the additional 4-week single-arm prospective study on 21 Asian women revealed improvements in facial wrinkles, skin moisture, elasticity, and density after the use of the topical PNA-20 CEF cosmeceutical formulation. Additional in-vitro and ex-vivo studies are needed for a comprehensive understanding of the skin anti-aging effects of MMP-1 PNA.

12.
Matrix Biol ; 119: 112-124, 2023 05.
Article in English | MEDLINE | ID: mdl-37031807

ABSTRACT

Abnormalities in the extracellular matrix (ECM) caused by ultraviolet (UV) radiation are mediated by epigenetic mechanisms. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is implicated in inflammation, immune regulation, and senescence. However, its role in controlling UV-induced ECM alterations in the skin remains elusive. Here, we investigated the role of EZH2 in UV-induced expression of matrix metalloproteinase (MMP)-1 and type I procollagen. We found that UV induced EZH2 expression in human skin in vivo and in human dermal fibroblasts (HDFs). EZH2 knockdown reduced the expression and promoter activity of MMP-1 and increased those of type I procollagen, whereas EZH2 overexpression had the opposite effects. Mechanistically, EZH2 increased NF-κB activity, and p65 and p50 expression and promoter activity. Intriguingly, chromatin immunoprecipitation assays revealed that the EZH2/p65/p50 complex was recruited and bound to the MMP-1 promoter after UV irradiation, independent of its histone methyltransferase activity. In contrast, EZH2-induced DNA methyltransferase 1 (DNMT1) formed a complex with EZH2 and enhanced the enrichment of H3K27me3 on the COL1A2 promoter following UV irradiation. These findings indicate that EZH2 plays a dual role in regulating MMP-1 and type I procollagen expression and improve our understanding of how this epigenetic mechanism contributes to UV-induced skin responses and photoaging. This study shows that inhibiting EZH2 is a potential anti-aging strategy for preventing UV-induced skin aging by reducing MMP-1 expression and inducing type I procollagen expression.


Subject(s)
Matrix Metalloproteinase 1 , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/pharmacology , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/pharmacology , Fibroblasts/metabolism
13.
Skin Res Technol ; 29(1): e13266, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704876

ABSTRACT

BACKGROUND: High-intensity focused ultrasound (HIFU) has been developed for the treatment of skin wrinkles on the face, neck, and body. OBJECTIVES: This study aimed to evaluate the effects of a home-used HIFU device on wrinkles in mice based on the expression of fibrosis-related genes and proteins. METHODS: The backs of 20-week-old mice were treated with a home-used HIFU using the following probes: 4 MHz, 1.5 mm focal depth. The treated mice were compared with young mice by histological examination, real-time polymerase chain reaction (PCR), and immunohistochemistry. Histological examination was performed by trichrome staining. Real-time PCR and immunohistochemistry were conducted to determine the expression of collagen types I and III, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1. RESULTS: Dermal thickness was increased after treatment with the home-used HIFU device at 30 and 60 s per day for 1 week or 30 and 60 s per day for 2 weeks on trichrome. Gene and protein expression of collagen types I and III and elastin were increased after treatment with HIFU at all options of 30 and 60 s per day for 1 week or 30 and 60 s per day for 2 weeks. Gene and protein expressions of MMP-1 and TIMP-1 were decreased after treatment with HIFU device at 30 and 60 s per day for 1 week or 30 and 60 s per day for 2 weeks. CONCLUSION: The home-used HIFU device can be an effective therapeutic modality for skin tightening.


Subject(s)
Cosmetic Techniques , High-Intensity Focused Ultrasound Ablation , Skin Aging , Animals , Mice , Collagen , Skin
14.
Tissue Eng Regen Med ; 20(2): 271-284, 2023 04.
Article in English | MEDLINE | ID: mdl-36462090

ABSTRACT

BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.


Subject(s)
Mesenchymal Stem Cells , Palatine Tonsil , Bone Marrow Cells , Culture Media, Conditioned/pharmacology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Mesenchymal Stem Cells/metabolism , Proteome/metabolism , Humans
15.
Life Sci ; 313: 121214, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36442527

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Airway inflammation and remodeling are the two key processes involved in COPD pathogenesis. However, the key pathogenic genes driving COPD development have not been revealed. This study aims to identify and validate hub gene(s) underlying COPD development through bioinformatics analysis and experimental validation. METHODS: Three lung tissue sequencing datasets of the COPD (including GSE38974, GSE103174, and GSE106986) were analyzed. Further, differentially expressed genes (DEGs) were used to compare patients with COPD with non-COPD individuals, and the Robust Rank Aggregation (RRA) analysis was also performed. Results revealed a series of potential pathogenic genes of COPD. DEGs were subjected to KEGG, GO, and GSEA analyses. The scRNA dataset of human lung tissues (Human Lung Cell Atlas), and human primary airway epithelial cells (GSE134147) were used to identify the cell subtype localization. The qRT-PCR assay was performed in the human lung tissues, COPD mice model, and primary bronchial epithelial cells at the air-liquid interface (ALI) under cigarette smoke extract (CSE) stimulation to verify the expression of the hub genes. LASSO and GLM analysis with the hub genes were performed to identify the most critical gene. RNA-seq was performed after knocking down the critical gene using siRNA in HBECs at ALI. The potential role of the critical gene was confirmed through qRT-PCR, Western blot, and Immunofluorescence (IF) assays. RESULTS: A total of 98 genes were significantly and differently expressed in 3 GEO datasets. The KEGG and GO analyses showed that most of these genes are responsible for inflammation, immunity, and cell proliferation. The core gene set including 15 genes was screened out and consequently, the MMP1 was the most likely responsible for the progression of COPD. Moreover, we confirmed that MMP1 is significantly related to inflammatory effects and cilia function in human bronchial epithelial cells cultured at the air-liquid interface (ALI). CONCLUSION: In summary, we confirmed that inflammation and cell proliferation are potentially critical processes in COPD occurrence and development. A total of 15 potential hub genes were identified among which MMP1 was the most likely gene responsible for the development of COPD. Therefore, MMP1 is a potential molecular target of COPD therapy.


Subject(s)
Matrix Metalloproteinase 1 , Pulmonary Disease, Chronic Obstructive , Animals , Mice , Humans , Matrix Metalloproteinase 1/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Lung/metabolism , Genetic Testing , Inflammation/pathology
16.
Cancer Research and Clinic ; (6): 179-184, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996209

ABSTRACT

Objective:To investigate the expressions of tissue inhibitor of matrix metalloproteinase-1 (TIMP1) and fibronectin 1 (FN1) in pregnancy associated breast cancer (PABC) and their correlations with expression of E-cadherin (E-cad).Methods:The clinicopathological data of 55 PABC patients in Binzhou People's Hospital Affiliated to Shandong First Medical University from January 2011 to December 2020 were retrospectively analyzed. Immunohistochemistry was used to detect expressions of TIMP1, FN1 and E-cad in cancer tissues and corresponding paracancerous tissues (>3 cm from the edge of the tumor foci). The expressions of TIMP1 and FN1 proteins in fresh intraoperative frozen cancer tissues and paracancerous tissues of 10 PABC patients were detected by Western blotting. The correlations of TIMP1 and FN1 expressions with clinicopathological characteristics of patients were analyzed by χ2 test, the correlation of TIMP1 and FN1 expressions with E-cad expression was analyzed by Spearman method, and the correlation of TIMP1 and FN1 expressions with survival was analyzed by Kaplan-Meier method. Results:The positive rates of TIMP1 and FN1 in PABC tissues were 72.7% (40/55) and 58.2% (32/55), and 25.5% (14/55) and 18.2% (10/55) in paracancerous tissues, and the differences were statistically significant ( χ2 values were 24.59 and 18.64, both P < 0.001). The results of Western blotting showed that the relative expressions of TIMP1 and FN1 proteins in the fresh cancer tissues of 10 PABC patients was higher than those in the corresponding paracancerous tissues (1.60±0.76 vs. 0.62±0.29, 1.31±0.62 vs. 0.44±0.15), and the differences were statistically significant ( t values were 5.92 and 4.86, both P < 0.001). The expressions of TIMP1 and FN1 in PABC tissues were correlated with estrogen receptor expression, Ki-67 positivity index, TNM stage and lymph node metastasis (all P < 0.05). The expressions of TIMP1 and FN1 were negatively correlated with expression of E-cad in PABC ( r values were -0.471 and -0.432, both P < 0.001). Five cases were lost to follow-up, and the remaining 50 cases had a median follow-up time of 43 months (12-90 months). Among the 50 cases, 36 cases were TMP1-positive and 29 cases were FN1-positive. The overall survival of TIMP1-negative group and FN1-negative group were better than those of the corresponding positive group ( χ2 values were 4.49 and 6.06, both P < 0.05); the median overall survival time of TIMP1-positive group and FN1-positive group were 51 months (95% CI 37-65 months) and 43 months (95% CI 32-53 months), while that of TIMP1-negative group and FN1-negative group were 89 months (95% CI 84-93 months) and 87 months (95% CI 85-92 months). Conclusions:TIMP1 and FN1 expressions are elevated in PABC tissues and negatively correlated with E-cad expression, TIMP1 and FN1 may be involved in PABC invasion through epithelial-mesenchymal transition and affect the prognosis of patients.

17.
Postepy Dermatol Alergol ; 39(5): 972-975, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36457686

ABSTRACT

Introduction: Morphea (localized scleroderma) is a rare, chronic, inflammatory connective tissue disease, characterized by immune system dysfunction, vasculopathy and skin fibrosis. One of the most effective treatments is phototherapy. Phototherapy has been found to be effective in treating localized scleroderma by inducing the expression of metalloproteinase-1. Aim: To compare the concentrations of metalloproteinase (MMP-1) before psoralen and ultraviolet A (PUVA) and ultraviolet A1 (UVA1) treatments in the serum of patients with morphea. Material and methods: The observational study was conducted in one research centre and included patients with generalised morphea who were treated with PUVA and UVA1 phototherapies. The mean age of all morphea patients included in the study was 55.7 years. The levels of MMP-1 were examined by ELISA (The Biorbyt Human MMP-1 ELISA - Enzyme-Linked Immunosorbent Assay). Results: The study showed that patients treated with PUVA and UVA1 had an improvement based on clinical measures, resulting in a reduction of clinical score. However, we did not observe statistically significant differences in MMP-1 concentrations before and after treatment. Limitations: The study sample was relatively small. Further studies on a larger group of patients would be beneficial. Conclusions: Our data suggest that there is a possible correlation between MMP-1 concentrations and phototherapy. MMP-1 levels were found to be increased following phototherapy treatment, which may suggest a correlation with better response to treatment in patients with morphea. However, further research is needed.

18.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501357

ABSTRACT

The major contributor to skin aging is UV radiation, which activates pro-inflammatory cytokines including TNF-α. TNF-α is involved in the acceleration of skin aging via ROS generation and MMP-1 secretion. In our preliminary study, a 30% EtOH extract from the leaves of Potentilla chinensis (LPCE) significantly inhibited TNF-α-induced ROS generation in human dermal fibroblasts (HDFs). Therefore, the objective of this study is to identify the active components in LPCE. A new flavonol-bis-glucuronide (potentilloside A, 1) and 14 known compounds (2-15) were isolated from an LPCE by repeated chromatography. The chemical structure of the new compound 1 was determined by analyzing its spectroscopic data (NMR and HRMS) and by acidic hydrolysis. Nine flavonols (2-9 and 11) and two flavone glycosides (12 and 13) from P. chinensis were reported for the first time in this study. Next, we evaluated the effects of the isolates (1-15) on TNF-α-induced ROS generation in HDFs. As a result, all compounds significantly inhibited ROS generation. Furthermore, LPCE and potentilloside A (1) remarkably suppressed MMP-1 secretion in HDFs stimulated by TNF-α. The data suggested that LPCE and potentilloside A (1) are worthy of further experiments for their potential as anti-skin aging agents.

19.
J Agric Food Chem ; 70(47): 14886-14897, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36398610

ABSTRACT

In response to physical, chemical, and/or biological stimuli, considerable tissue self-degradation occurs in abalone, causing severe post-harvest quality loss. During this process, the extracellular matrix (ECM) is greatly degraded by endogenous proteases. The main component of the ECM is collagen, primarily type I collagen. Although the activity of matrix metalloproteinases (MMPs), which can specifically degrade collagen, is precisely regulated by tissue inhibitors of MPs (TIMPs), indicating that MMPs and TIMPs play crucial roles in the regulation of tissue self-degradation, few studies have reported the interaction between MMPs and TIMPs. In this study, we reveal collagenases to participate in postmortem tissue self-degradation of Haliotis discus hannai by degrading type I collagen. The recombinant MMP-1 catalytic domain (rMMP1c) of abalone with high purity and enzyme activity is expressed using a prokaryotic expression system. The optimum temperature and pH for rMMP1c are 37 °C and 7.0, respectively. The thermal denaturation temperature of rMMP1c is 67.0 ± 0.9 °C. Ethylenediamine tetraacetic acid (EDTA) and 1,10-phenanthroline can completely inhibit rMMP1c activity, while Ba2+, Ca2+, and Mg2+ can significantly elevate it. TIMP is also expressed using HEK 293F cells. Recombinant TIMP (rTIMP) shows good inhibitory activity toward rMMP1c. Inhibition kinetics analyses reveal rTIMP to be a competitive inhibitor of rMMP1c. Biolayer interferometry reveals that rTIMP can effectively bind with rMMP1c, with an equilibrium dissociation constant value of 263 nM. rMMP1c effectively degrades type I collagen γ-ß-α chains in turn, and rTIMP can significantly inhibit rMMP1c degradation activity. These results provide a theoretical basis for the study of MMP and TIMP interaction and elucidate the possible mechanism for abalone tissue self-degradation.


Subject(s)
Gastropoda , Matrix Metalloproteinase 1 , Animals , Matrix Metalloproteinase 1/genetics , Collagen Type I/genetics , Metalloproteases , Gastropoda/genetics , Tissue Inhibitor of Metalloproteinases
20.
J Clin Exp Hepatol ; 12(6): 1492-1513, 2022.
Article in English | MEDLINE | ID: mdl-36340300

ABSTRACT

Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.

SELECTION OF CITATIONS
SEARCH DETAIL