Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.246
Filter
1.
J Environ Sci (China) ; 147: 392-403, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003057

ABSTRACT

This study used steel slag, fly ash, and metakaolin as raw materials (SFM materials) to create silica-alumina-based geopolymers that can solidify Hg2+ when activated with sodium-based water glass. The experiments began with a triangular lattice point mixing design experiment, and the results were fitted, analyzed, and predicted. The optimum SFM material mass ratio was found to be 70% steel slag, 25% fly ash, and 5% metakaolin. The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg2+of geosynthetics with different modulus. The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings. The inclusion of 50% SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%. The mercury concentration of herbaceous plant samples was also reduced by 78%. It indicates that the SFM material can effectively attenuate the migration transformation of mercury. Finally, characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg2+ solidification by geopolymers generated by SFM materials. The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation, chemical bonding s, surface adsorption of Hg2+ and its precipitates by the geopolymer, and physical encapsulation.


Subject(s)
Mercury , Mercury/chemistry , Mercury/analysis , Polymers/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Mining , Coal Ash/chemistry , Models, Chemical
2.
J Environ Sci (China) ; 148: 420-436, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095177

ABSTRACT

Mercury (Hg) pollution has been a global concern in recent decades, posing a significant threat to entire ecosystems and human health due to its cumulative toxicity, persistence, and transport in the atmosphere. The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants. Besides the advantages of good Hg° capture performance and low secondary pollution of the mineral selenium compounds, the most noteworthy is the relatively low regeneration temperature, allowing adsorbent regeneration with low energy consumption, thus reducing the utilization cost and enabling recovery of mercury resources. This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal, introduces in detail the different types of mineral selenium compounds studied in the field of mercury removal, reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components, such as reaction temperature, air velocity, and other factors, and summarizes the adsorption mechanism of different fugitive forms of selenium species. Based on the current research progress, future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg0 and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg0 removal in practical industrial applications. In addition, it remains a challenge to distinguish the oxidation and adsorption of Hg0 quantitatively.


Subject(s)
Air Pollutants , Mercury , Mercury/chemistry , Adsorption , Air Pollutants/chemistry , Selenium/chemistry , Gases/chemistry , Selenium Compounds/chemistry
3.
J Environ Sci (China) ; 148: 683-690, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095199

ABSTRACT

Mercury (Hg), especially methylmercury (MeHg), accumulation in rice grain due to rice paddy possessing conditions conducive to Hg methylation has led to human Hg exposure through consumption of rice-based daily meals. In addition to being a food staple, rice is widely used as a raw material to produce a vast variety of processed food products. Little is known about Hg levels in snacking rice-food products and potential Hg exposure from consumption of them, besides previous studies on infant rice cereals. Aiming to provide complementary information for a more complete assessment on Hg exposure risk originated from Hg-containing rice, this study determined total Hg (THg) and MeHg levels in 195 rice-containing and rice-free processed food products covering all major types of snack foods marketed in China and the estimated daily intake (EDI) of dietary Hg from the consumption of these foods. The results clearly showed THg and MeHg contents in rice-containing foods were significantly higher than rice-free products, suggesting the transfer of Hg and MeHg from the rice to the end products, even after manufacturing processes. Moreover, significant positive correlations were observed between THg, MeHg, or MeHg/THg ratio and rice content for samples containing multiple grains as ingredients, further indicating the deciding role of rice for Hg levels in the end food products. Although the EDI of THg and MeHg via rice-based food products were relatively low compared to the reference dose, it should be considered these snacking food products would contribute additive Hg intake outside of the daily regular meals.


Subject(s)
Dietary Exposure , Food Contamination , Mercury , Methylmercury Compounds , Oryza , Oryza/chemistry , Mercury/analysis , Food Contamination/analysis , China , Methylmercury Compounds/analysis , Dietary Exposure/analysis , Dietary Exposure/statistics & numerical data , Humans , Risk Assessment
4.
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095204

ABSTRACT

In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.


Subject(s)
Air Pollutants , Mercury , Oxides , Toluene , Toluene/chemistry , Oxides/chemistry , Air Pollutants/chemistry , Mercury/chemistry , Coke , Catalysis , Chromium/chemistry , Adsorption , Manganese/chemistry , Manganese Compounds/chemistry , Models, Chemical
5.
J Am Dent Assoc ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243252

ABSTRACT

BACKGROUND: In light of the Minamata Convention on Mercury and efforts to phase down dental amalgam use, tracking dental amalgam proportions across US Food and Drug Administration (FDA)-identified at-risk populations is of interest to optimize material selection aligned with patient needs. METHODS: A retrospective observational study of Epic's Cosmos electronic health records data set was conducted to calculate the rates of dental amalgam restorations from 2017 through 2023 and stratified using the social vulnerability index (quartile 4 indicates the highest social vulnerability and quartile 1 indicates the lowest) and payer type (Medicare, Medicaid, self-pay, miscellaneous or other). The authors included the following FDA-identified at-risk populations: pregnant people, children younger than 6 years, people with preexisting neurologic conditions, and people with impaired kidney function (n = 1,897,976). RESULTS: The overall rate of dental amalgam restoration placements in the general population declined from 21.8% in 2017 to 4.1% in 2023. Dental amalgam restoration trends, according to social vulnerability index quartile and payer type, decreased consistently across all 4 evaluated populations. Of all the social vulnerability index quartiles, quartile 4, representing the most socially vulnerable group, had the smallest decrease in dental amalgam placement rates among the FDA-identified populations examined. CONCLUSIONS: The study results showed a decreasing trend in dental amalgam restorations from 2017 through 2023 among FDA-identified populations, consistent with the Minamata Convention on Mercury directive for a phasedown in dental amalgam use. Notwithstanding improvements, lingering disparities persist among the most vulnerable population. PRACTICAL IMPLICATIONS: Even within the groups identified as most vulnerable to harm, more targeted interventions and strategies are required to improve treatment among the most socially vulnerable.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125129, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39288603

ABSTRACT

Selective response is the key index to evaluate the performance of polymeric carbon nitride (PCN)-based heavy metal ion fluorescence sensors. Herein, to explore the role of cyano groups on selectivity, four kinds of PCN, including PCN-Cl, PCN-Ac, PCN-B and PCN-K were prepared by the molten salt method of sodium chloride and sodium acetate, the reduction method of sodium borohydride and the etching method of potassium hydroxide, respectively. These PCNs exhibited different surface cyano characteristics, but all of them had significant blue emission under ultraviolet excitation. It is proved that the assistant of sodium chloride or potassium hydroxide is an effective method to prepare PCNs with abundant surface cyano group. A series of fluorescence quenching experiments of metal ions showed that the cyano-rich degree of PCN is closely related to its selective response to mercury (II) ions. PCN-Cl and PCN-K emerged good selective quenching of mercury (II) ions, which may be related to the soft acid-soft base strong interaction between mercury (II) ions and cyano groups. Both PCN-Cl and PCN-K fluorescent probes for mercury (II) ions had a linear range of 5 âˆ¼ 50 µmol L-1, and PCN-Cl exhibited a lower detection limit of 0.38 µmol L-1. This work confirmed the selective fluorescence response of cyano-rich PCN to mercury (II) ions, proposed the mechanism of selective fluorescence quenching response of mercury (II) ions, and provided a new idea for the design of efficient and accurate PCN-based fluorescence probes.

7.
Environ Sci Pollut Res Int ; 31(43): 55549-55561, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39231843

ABSTRACT

Mercury is one of the most toxic pollutants that has drawn the attention of scientists. This study investigates the phytoremediation capabilities of Vigna radiata L. in conjunction with microbial biostimulators. The inoculated seeds were cultivated in soil under controlled greenhouse conditions. The concentration of Hg, biomass, and photosynthetic pigments was investigated under amendment factor including EDTA, bacterial, fungal (Mycorrhiza and Trichoderma), biochar, and combined levels, as well as the pollution factor with three levels of HgCl2 as two factorial experiments. Results showed that Plant Growth-Promoting Microorganisms (PGPMs) influenced mercury absorption and distribution in different plant organs. Aside from biochar, all stimulators increased the plant's Hg concentration. Although EDTA greatly increased mercury accumulation in plants, it reduced biomass. Fungal and bacterial treatments increased total mercury in the plant but decreased its concentration in the leaves. The combination of bacteria and fungi resulted in the highest mercury absorption, while the biochar in combination with PGPMs produced the greatest biomass. Analysis of mercury concentration in seeds indicated that V radiata effectively prevented its contamination in seeds. The results disclosed that microbial combinations of bacteria and fungi could increase the plant's potential to cope with heavy metal pollution. This improvement is due to the different roles of these two organisms, like nitrogen fixation by bacteria and phosphorus absorption by mycorrhiza fungi. Moreover, biochar as a soil amendment and microorganism carrier was noticed. Finally, considering the plant's inherent capacity to stabilize mercury in the roots, phytostabilization with the benefit of combined levels of biochar and microorganisms can be introduced as the best approach.


Subject(s)
Biodegradation, Environmental , Mercury , Soil Pollutants , Vigna , Mercury/metabolism , Soil Pollutants/metabolism , Vigna/metabolism , Soil/chemistry , Bacteria/metabolism , Fungi/metabolism , Mycorrhizae/metabolism , Soil Microbiology
8.
Sci Total Environ ; 954: 176416, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306121

ABSTRACT

Developing rapid and sensitive methods for monitoring inorganic mercury (Hg2+) and methylmercury (CH3Hg+) in crayfish is crucial for understanding the environmental impact of these contaminants. In this work, a novel tri-mode strategy was developed for highly sensitive monitoring of Hg2+ and CH3Hg+ bioaccumulation in crayfish by inductively coupled plasma mass spectrometry (ICP-MS)/ fluorescence /smartphone colorimetric (RGB) analysis without chromatographic separation. Cation exchange reaction (CER) was performed between Hg2+ and luminescent CdTe quantum dots (QDs), while CH3Hg+ unrealizable CER. The CH3Hg+ can be transformed to Hg2+ by simple UV irradiation, speciation analysis can be realized by detecting the fluorescence of CdTe QDs after incubation by Hg2+ and total Hg2+. In addition, the filtration of reacted CdTe QDs was carried out, ICP-MS was performed to detect exchanged Cd2+ by Hg2+ and total Hg2+, as well the smartphone RGB analysis was performed for membrane colorimetry. The limits of detection (LODs) of Hg2+ and CH3Hg+ for ICP-MS, fluorescence, and colorimetric (RGB) modes were 0.03 ng mL-1, 18 ng mL-1, and 0.9 µg mL-1 respectively. Density Functional Theory (DFT) was employed to validate the mechanism of the CER reaction. CdTe QDs array analysis with five different ligands was performed to eliminate potential ion interferences of Ag+ and Cu2+ that could occur during the CER reaction. The well-designed system was successfully utilized for monitoring trace Hg2+ and CH3Hg+ in crayfish fed Hg2+ and CH3Hg+ contaminative food over a two-week "uptake" period and a three-week "depuration" period. The results indicated that the Hg2+ uptake in different tissues was significantly different from that of CH3Hg+ in all tissues. There was evidence of Hg uptake from water via leaching from food, although the principal source of uptake was from food.

9.
Proc Natl Acad Sci U S A ; 121(40): e2405898121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39312660

ABSTRACT

Global pollution has exacerbated accumulation of toxicants like methylmercury (MeHg) in seafood. Human exposure to MeHg has been associated with long-term neurodevelopmental delays and impaired cardiovascular health, while many micronutrients in seafood are beneficial to health. The largest MeHg exposure source for many general populations originates from marine fish that are harvested from the global ocean and sold in the commercial seafood market. Here, we use high-resolution catch data for global fisheries and an empirically constrained spatial model for seafood MeHg to examine the spatial origins and magnitudes of MeHg extracted from the ocean. Results suggest that tropical and subtropical fisheries account for >70% of the MeHg extracted from the ocean because they are the major fishing grounds for large pelagic fishes and the natural biogeochemistry in this region facilitates seawater MeHg production. Compounding this issue, micronutrients (selenium and omega-3 fatty acids) are lowest in seafood harvested from warm, low-latitude regions and may be further depleted by future ocean warming. Our results imply that extensive harvests of large pelagic species by industrial fisheries, particularly in the tropics, drive global public health concerns related to MeHg exposure. We estimate that 84 to 99% of subsistence fishing entities globally likely exceed MeHg exposure thresholds based on typical rates of subsistence fish consumption. Results highlight the need for both stringent controls on global pollution and better accounting for human nutrition in fishing choices.


Subject(s)
Fisheries , Fishes , Methylmercury Compounds , Seafood , Methylmercury Compounds/analysis , Humans , Seafood/analysis , Animals , Fishes/metabolism , Environmental Exposure , Food Contamination/analysis , Water Pollutants, Chemical/analysis
10.
Environ Res ; 263(Pt 1): 120048, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313174

ABSTRACT

Black-odorous sediments provide ideal conditions for microbial mercury methylation. However, the multiple effects of carbon, sulfur, and iron on the microbial methylmercury of mercury in black-odorous sediments remains unclear. In this study, we conducted mercury methylation experiments using sediments collected from organically contaminated water bodies, as well as black-odorous sediments simulated in the laboratory. The results showed that black-odorous sediments exhibit a high capacity for mercury methylation. By simulating the blackening and odorization process in sediments, it was confirmed that dissolved oxygen, organic matter and sulfide were the primary factors triggering the black-odorous phenomenon in sediments. Regarding the influence of key factors in sediments on methylmercury formation, the batch tests demonstrated that high concentrations of organics additions (above 200 mg/L) may reduce bacterial activity and weaken mercury methylation in sediments. Under five different iron-sulfur ratios, the concentrations of methylmercury in the black-odorous sediments showed an increasing trend, the ratio of 5.0 Fe/S exhibited the highest MeHg accumulation. The iron-sulfur ratio in the sediment had a significant effect on the mercury methylation process, which was mainly due to the competition between Fe2+ and Hg2+ for sulfide sites and the adsorption/coprecipitation of Hg2+ by FeS. These findings offer a potential avenue for further understanding and controlling mercury methylation, contributing to the mitigation of the potential threat of mercury pollution to the environment and human health.

11.
Sci Total Environ ; 954: 176324, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299313

ABSTRACT

Metal pollution is a global environmental issue with adverse biological effects on wildlife. Long-term studies that span declines in metal emissions due to regulation, resulting in varying levels of environmental contamination, are therefore well-suited to investigate effects of toxic metals, while also facilitating robust analysis by incorporating fluctuating environmental conditions and food availability. Here, we examined a resident population of tawny owls in Norway between 1986 and 2019. Tail feathers from females were collected annually, resulting in over 1000 feathers. Each feather served as an archive of local environmental conditions during molt, including the presence of metals, and their dietary ecology, proxied by stable isotopes of nitrogen (δ15N) and carbon (δ13C), as well as corticosterone levels (CORTf), the primary avian glucocorticoid and a measure of physiological stress. We analyzed feathers to examine how exposure to toxic metal(loid)s (Al, As, Cd, Hg, and Pb) and variability in dietary proxies modulate CORTf. Using structural equation modelling, we found that increased Al concentrations and δ15N values, linked directly to increased CORTf. In opposite, we found that increased Hg concentrations and δ13C related to decreased CORTf concentrations. δ15N was indirectly linked to CORTf through Al and Hg, while δ13C was indirectly linked to CORTf through Hg. This supports our hypothesis that metal exposure and dietary ecology may individually or jointly influence physiological stress. Notably, our results suggest that dietary ecology has the potential to mediate the impact of metals on CORTf, highlighting the importance of considering multiple variables, direct and indirect effects, when assessing stress in wildlife. In conclusion, feathers represent an excellent non-destructive biomonitoring strategy in avian wildlife, providing valuable insights not easily accessible using other methods. Further research is warranted to fully comprehend implications of alterations in CORTf on the tawny owl's health and fitness.

12.
Environ Pollut ; 362: 124978, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303933

ABSTRACT

Heavy metals increase in nature due to anthropogenic activities and negatively impact the growth, progress, and efficiency of plants. Among the toxic metal pollutants that can cause dangerous effects when accumulated by plants, mercury (Hg) and cadmium (Cd) were investigated in this study. These metals typically inhibit important enzymes and halt their functioning, thereby adversely affecting the capability of plants to achieve photosynthesis, respiration, and produce quality crops. Acetylcholine (ACh) serves as a potent neurotransmitter present in both primitive and advanced plant species. Its significant involvement in diverse metabolic processes, particularly in regulating growth and adaptation to stress, needs to be further elucidated. For this aim, effects of acetylcholine (ACh1, 10 µM; ACh2, 100 µM) were survey in Triticum aestivum under Hg and/or Cd stress (Hg, 50 µM; Cd, 100 µM). Wheat seedlings exhibited a growth retardation of about 24% under Hg or Cd stress. Combined stress conditions (Cd + Hg) resulted in a decrease in RWC by approximately 16%. Two different doses of ACh treatment to stressed plants positively affected growth parameters and regulated the water relations. Gas exchange was limited in stress groups, and the photochemical quantum competency of PSII (Fv/Fm) was suppressed. Cd + ACh1 and Cd + ACh2 treatments resulted in approximately 2-fold and 1.5-fold improvement in stomatal conductance and carbon assimilation rate, respectively. Similarly, improvement was observed with ACh treatments in wheat seedlings under Hg stress. Under Cd and/or Hg stress, high levels of H2O2 accumulated and lipid peroxidation occurred. According to our results, ACh treatment upon Cd and Hg stresses improved the activities of SOD, POX, and APX, thereby reducing oxidative damage. In conclusion, ACh treatment was found to ensure stress tolerance and limit the adverse effects caused by heavy metals.

13.
Environ Sci Pollut Res Int ; 31(44): 56363-56376, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39271610

ABSTRACT

A field survey was conducted in the central Tibetan Plateau (Nam Co) in China for high-time resolution measurements of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (PBM). Average concentrations (± 1 SD) of GEM, PBM, and GOM from November 2014 to March 2015 were 1.11 ± 0.20 ng m-3, 50.8 ± 26.5 pg m-3, and 3.6 ± 3.2 pg m-3, respectively. During the monitoring period, both GEM and GOM exhibited relative stability in their monthly variations, whereas PBM concentrations were significantly higher in winter compared to those in later autumn and early spring. In terms of diurnal variations, the maximum concentration of GEM was typically observed after sunrise, while PBM reached its peak before sunrise, and the highest concentration of GOM was recorded in the afternoon. Vertical convection conditions, photochemical production, and gas-particle partitioning were responsible for the diurnal cycle of atmospheric mercury. Based on modeling results, it was determined that the air mass transported from South Asia significantly impacted atmospheric mercury levels at Nam Co Station. The regions of western and central Nepal, central and eastern Pakistan, and northern India were identified as potential sources of atmospheric mercury at Nam Co.


Subject(s)
Air Pollutants , Atmosphere , Environmental Monitoring , Mercury , Mercury/analysis , Air Pollutants/analysis , Tibet , Atmosphere/chemistry , China
14.
Environ Sci Pollut Res Int ; 31(45): 56645-56659, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39285112

ABSTRACT

The mercury pollution status in the northwestern Sea of Okhotsk remains largely unexplored. In this study, hair samples were collected from 40 bearded seals harvested between August and October 2021 in the region. Total mercury (THg) concentrations in the samples exhibited a wide range from 137 to 1885 ng/g (median: 407 ng/g). While no significant differences in THg concentrations were found between male and female seals, distinctions were observed between young and potentially mature seals. Stable nitrogen isotope analysis indicated that juveniles and mature adults did not differ, although sample sizes were limiting. The higher THg concentrations in juveniles were attributed to variations in the seals' diets and/or variations in foraging locations during the juvenile stage which likely contribute to THg differences due to greater seasonal migration to offshore habitats. Notably, THg levels in bearded seals from the northwestern Sea of Okhotsk were lower in comparison to other pinniped species in the North Pacific. These findings, representing the first dataset for this pinniped species in the Russian segment of its habitat, contribute insights into mercury exposure in the Sea of Okhotsk mammalian population.


Subject(s)
Environmental Monitoring , Hair , Mercury , Nitrogen Isotopes , Seals, Earless , Animals , Mercury/analysis , Nitrogen Isotopes/analysis , Hair/chemistry , Female , Male , Water Pollutants, Chemical/analysis
15.
J Chromatogr A ; 1735: 465309, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39241401

ABSTRACT

Owing to the on-going emission of Hg into the global environment, new insight into their bioinorganic chemistry in mammals is urgently required to better understand their adverse health effects and analytical methods to quantify Hg2+ and MeHg+ in environmental samples are needed. Analytical separations can help to address both of these needs. While Hg2+ and MeHg+ have been most frequently separated by cation and reversed-phase (RP) HPLC, we here report on using anion-exchange (AEX) HPLC in conjunction with a flame atomic absorption spectrometer (FAAS) to observe the retention behavior of these mercury species in the pH range 5.0-8.0 using mobile phases comprised of 10 mM l-cysteine (Cys) in 100 mM phosphate buffer. The results obtained for pH 5.0 served as a starting point to develop a rapid HPLC separation for these mercurials. The addition of 5-20 % methanol (MeOH) to this mobile phase revealed that MeOH did not appreciably change the retention of Hg2+, but significantly reduced the retention of MeHg+. A 15 % MeOH-containing mobile phase offered the best compromise between achieving a rapid baseline separation in <400 s at affordable costs. To assess the suitability and robustness of the developed AEX-HPLC separation method for the analysis of environmental samples an inductively coupled plasma atomic emission spectrometer (ICP-AES) was employed as the mercury-specific detector. The developed AEX-HPLC-ICP-AES method allowed to achieve detection limits of 1.5 ppm for Hg2+ and 2.9 ppm for MeHg+ and was successfully applied to analyze wastewater that had been spiked with Hg2+ and MeHg+.


Subject(s)
Cysteine , Mercury , Methylmercury Compounds , Chromatography, High Pressure Liquid/methods , Cysteine/chemistry , Mercury/analysis , Mercury/chemistry , Mercury/isolation & purification , Methylmercury Compounds/analysis , Methylmercury Compounds/isolation & purification , Chromatography, Ion Exchange/methods , Limit of Detection , Spectrophotometry, Atomic/methods , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
16.
Bioresour Technol ; 413: 131465, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39260732

ABSTRACT

Bacterial mercury (Hg) methylation is critical for bioremediating Hg pollution, but the impact of emerging antibiotics on this process has rarely been reported. This study innovatively investigated the interactions between Hg-methylating bacteria of Geobacter metallireducens GS-15 and two quinolone antibiotics: lomefloxacin (LOM) and ciprofloxacin (CIP) at 5 µg/L. Short-term LOM exposure increased methylmercury (MeHg) yield by 36 % compared to antibiotic-free conditions, caused by hormesis to alter bioactivities of single GS-15 cells. Long-term CIP exposure led to more antibiotic resistance and mercury tolerance in GS-15 cells, doubling MeHg productivity and significantly increasing expression of Hg methylation (hgcA by 95 folds) and antibiotic resistance (gyrA by 54 folds) genes, while mercury resistance gene merA only increased by 2.5 folds than without selective pressure. These results suggest quinolone antibiotics at environmentally contaminated concentrations stimulate bacterial Hg methylation to form highly toxic MeHg, raising considerable concern for the Hg-antibiotic complex in contaminated environments.

17.
Ecotoxicol Environ Saf ; 284: 116993, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260217

ABSTRACT

Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δ202Hg (-1.86 % to -0.32 %; mean = -1.17 ± 0.65 %, 2 SD, n = 34) and small variations in Δ199Hg (-0.27 % to 0.04 %; mean = -0.13 ± 0.14 %, 2 SD, n = 34) and Δ200Hg (-0.20 % to 0.06 %; mean = -0.05 ± 0.13 %, 2 SD, n = 34). During the sampling period, GEM was negatively correlated with gaseous oxidized mercury (GOM). However, the GOM/GEM ratio was not -1, suggesting that GEM oxidation and subsequent scavenging occurred previously. The δ202Hg isotopic compositions of TGM at MLO were different from those of reported values of high-altitude mountains; the δ202Hg of TGM at MLO was lower than the isotopic ratios that were obtained from other mountain regions. The unique atmospheric conditions at Mauna Loa, with (upslope winds during the day and downslope winds at night, likely result in the) possibly mixing of GEMs from terrestrial (and possibly oceanic GEM emission) sources with and tropospheric sources, influencing and affect the isotopic composition. During the late summer to early fall (September 14-28), negative correlations were found between relative humidity and GOM and between particle number concentrations and Δ199Hg, indicating the gas-to-particle partitioning of the atmospheric mercury during this period. This study will improve our understanding on mercury dynamics of marine origin and high altitudes and shed light on its complex interactions with environmental factors.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125085, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39265469

ABSTRACT

A new 1,8-naphthalimide derivative (probe 1) adopts V-shaped structure, emits fluorescence and displays the Mie effect and aggregation-induced emission (AIE). Selective interactions of thiophilic Ag+ and Hg2+ ions (10 µM) with 1 (10 µM) resulted in AIEs at 499 and 521 nm, respectively. Both Ag+ and Hg2+ induce the formation of 1:2 complexes with 1, leading to the formation of AIE active aggregates with an average size of 423 and 198 nm, respectively. The formation of crystalline needles with Ag+ and spherical aggregates with Hg2+ results in wavelength specific AIE that permits the naked-eye and fluorometric detection of Ag+ and Hg2+ ions. Probe 1 shows excellent selectivity toward Ag+ and Hg2+ among various metal ions, therefore, 1 is suitable for the selective and quantitative detection of Ag+ and Hg2+ ions. Job plots are used for the determination of the stoichiometry of the complexes formed. It is evident from the fluorescence images of probe 1 in Rhizoctonia oryzae mycelia cells that they can be employed as potential candidates for in-vitro bioimaging.

19.
Sci Rep ; 14(1): 20955, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251778

ABSTRACT

The novel structure of Hg(II) complexes including the pyridinium ylide C5H5NCHC(O)C6H4-m-Br (Y) were synthesized and reported in this study. In the first step, the pyridinium salt C5H5NCH2C(O)C6H4-m-Br (S) was produced by reacting 2,3'-dibromoactophenone and pyridine. then, treatment of S with K2CO3 gave the related pyridinium ylide Y. Finally, the reaction of Y with HgX2 and Hg(NO3)2·H2O leads to the formation of novel binuclear [HgY2][HgX4] (X=Cl (1); X=Br (2); X=I (3)) and polymeric [HgY(NO3)2]n (4) complexes. The structure of complex 2 was also determined by X-ray diffraction analysis. The obtained analyses proved the coordination through the ylidic carbon to metallic center. Additionally, Natural Bond Orbital (NBO), Energy Decomposition Analysis (EDA), and EDA-NOCV studies are also used to investigate the nature of metal-ligand bonding in the complexes. Finally, the antibacterial activity of 1-4 was also examined against Gram positive and negative represented significant levels of inhibitory potency respected to used standards.


Subject(s)
Anti-Bacterial Agents , Mercury , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Mercury/chemistry , Microbial Sensitivity Tests , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Structure
20.
Chemosphere ; 365: 143349, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278331

ABSTRACT

Thermal desorption is a well-assessed technique to speciate mercury (Hg) in soils and sediments. However, the effects related to the different matrices are still not properly assessed. In this study, thermal desorption was applied to Hg-free calcite mixed with Hg standard and soils rich in carbonate and silicate minerals, as well as organic matter. Hg0, HgCl2, HgO, α-HgS, ß-HgS and organo-mercuric compounds were recognized, pointing out that the soil matrix operates notable differences in terms of breakdown temperatures of the Hg-compounds and suggesting that the mineralogical composition of soil has to be investigated before applying the thermal desorption technique. Furthermore, the presence of Hg0 was carefully evaluated since, as already observed, it forms Hg2+, which increases mercury mobility in the pedological cover with important consequences for those soils contaminated and located close to decommissioned or active mining areas and/or industrial sites (e.g. chloro-alkali industries). Experimental runs were thus carried out by using carbonate-, silicate- and organic-rich soils doped with liquid Hg. It was observed that Hg0 tends to be oxidized to form Hg+ and then Hg2+ as a function of soil matrix and reaction time. Surprisingly, the oxidation rate is rather fast, since after 42 days the initial content of Hg0 is halved, thus following an exponential decay. This implies that in Hg0-polluted areas, the fate of the resulting Hg2+ can be that to: i) be adsorbed by organic matter and/or Fe-Mn-Al oxides and/or ii) feed shallow aquifers. This study is a further step ahead to understand the behavior of Hg in contaminated soils from industrial and mining areas where liquid Hg is occurring in different soil matrices and may provide useful indications for remediation operations.

SELECTION OF CITATIONS
SEARCH DETAIL