Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 9(19): e2000877, 2020 10.
Article in English | MEDLINE | ID: mdl-32893995

ABSTRACT

Sonodynamic therapy has received increasing attention for cancer treatments as an alternative to photodynamic therapy. However, its clinical applications have been limited by the lack of a sonosensitizer that is capable of producing sufficient amounts of reactive oxygen species (ROS) in response to ultrasound (US) exposure. Herein, PEGylated mesoporous silica-titania nanoparticles (P-MSTNs) are prepared and used as US-responsive nanocarriers for cancer sonotheranostics. Perfluorohexane (PFH), which is chosen as the gas precursor, is physically encapsulated into P-MSTNs using the oil-in-water emulsion method. Owing to the vaporization of the gas precursor, PFH@P-MSTNs (137 nm in diameter) exhibit a strong photoacoustic signal in vivo for at least 6 h. Compared to P-MSTNs, PFH@P-MSTNs generate significantly higher amounts of ROS due to the nanobubble-induced cavitation in the presence of US. When systemically administered to tumor-bearing mice, PFH@P-MSTNs effectively accumulate in the tumor site due to the passive targeting mechanism. Consequently, PFH@P-MSTNs show much higher antitumor efficacy than P-MSTNs due to the enhanced cavitation-mediated ROS generation in response to US exposure. It is considered that PFH@P-MSTNs may hold significant potential for cancer sonotheranostics.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Silicon Dioxide , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL