Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Korean J Physiol Pharmacol ; 28(5): 413-422, 2024 09 01.
Article in English | MEDLINE | ID: mdl-39198222

ABSTRACT

Group I metabotropic glutamate receptors (mGluRs) modulate postsynaptic neuronal excitability and epileptogenesis. We investigated roles of group I mGluRs on low extracellular Mg2+ concentration ([Mg2+]o)-induced epileptiform activity and neuronal cell death in the CA1 regions of isolated rat hippocampal slices without the entorhinal cortex using extracellular recording and propidium iodide staining. Exposure to Mg2+-free artificial cerebrospinal fluid can induce interictal epileptiform activity in the CA1 regions of rat hippocampal slices. MPEP, a mGluR 5 antagonist, significantly inhibited the spike firing of the low [Mg2+]o-induced epileptiform activity, whereas LY367385, a mGluR1 antagonist, did not. DHPG, a group 1 mGluR agonist, significantly increased the spike firing of the epileptiform activity. U73122, a PLC inhibitor, inhibited the spike firing. Thapsigargin, an ER Ca2+-ATPase antagonist, significantly inhibited the spike firing and amplitude of the epileptiform activity. Both the IP3 receptor antagonist 2-APB and the ryanodine receptor antagonist dantrolene significantly inhibited the spike firing. The PKC inhibitors such as chelerythrine and GF109203X, significantly increased the spike firing. Flufenamic acid, a relatively specific TRPC 1, 4, 5 channel antagonist, significantly inhibited the spike firing, whereas SKF96365, a relatively non-specific TRPC channel antagonist, did not. MPEP significantly decreased low [Mg2+]o DMEM-induced neuronal cell death in the CA1 regions, but LY367385 did not. We suggest that mGluR 5 is involved in low [Mg2+]oinduced interictal epileptiform activity in the CA1 regions of rat hippocampal slices through PLC, release of Ca2+ from intracellular stores and PKC and TRPC channels, which could be involved in neuronal cell death.

2.
J Psychiatr Res ; 176: 23-32, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833749

ABSTRACT

Numerous findings confirm that the metabotropic glutamate receptors (mGluRs) are involved in the conditioned place preference (CPP) induced by morphine. Here we focused on the role of mGluR5 in the nucleus accumbens (NAc) as a main site of glutamate action on the rewarding effects of morphine. Firstly, we investigated the effects of intra-NAc administrating mGluR5 antagonist 3-((2-Methyl-1,3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP; 1, 3, and 10 µg/µl saline) on the extinction and the reinstatement phase of morphine CPP. Moreover, to determine the downstream signaling cascades of mGluR5 in morphine CPP, the protein levels of stromal interaction molecules (STIM1 and 2) in the NAc and hippocampus (HPC) were measured by western blotting. The behavioral data indicated that the mGluR5 blockade by MTEP at the high doses of 3 and 10 µg facilitated the extinction of morphine-induced CPP and attenuated the reinstatement to morphine in extinguished rats. Molecular results showed that the morphine led to increased levels of STIM proteins in the HPC and increased the level of STIM1 without affecting STIM2 in the NAc. Furthermore, intra-NAc microinjection of MTEP (10 µg) in the reinstatement phase decreased STIM1 in the NAc and HPC and reduced the STIM2 in the HPC. Collectively, our data show that morphine could facilitate brain reward function in part by increasing glutamate-mediated transmission through activation of mGluR5 and modulation of STIM proteins. Therefore, these results highlight the therapeutic potential of mGluR5 antagonists in morphine use disorder.


Subject(s)
Extinction, Psychological , Morphine , Nucleus Accumbens , Pyridines , Receptor, Metabotropic Glutamate 5 , Thiazoles , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Male , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Morphine/pharmacology , Morphine/administration & dosage , Thiazoles/pharmacology , Thiazoles/administration & dosage , Rats , Pyridines/pharmacology , Pyridines/administration & dosage , Rats, Sprague-Dawley , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Narcotics/pharmacology , Narcotics/administration & dosage , Dose-Response Relationship, Drug
3.
J Affect Disord ; 361: 415-424, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38876317

ABSTRACT

BACKGROUND: Elucidating biological mechanisms contributing to bipolar disorder (BD) is key to improved diagnosis and treatment development. With converging evidence implicating the metabotropic glutamate receptor 5 (mGlu5) in the pathology of BD, here, we therefore test the hypothesis that recently identified deficits in mGlu5 are associated with functional brain differences during emotion processing in BD. METHODS: Positron emission tomography (PET) with [18F]FPEB was used to measure mGlu5 receptor availability and functional imaging (fMRI) was performed while participants completed an emotion processing task. Data were analyzed from 62 individuals (33 ± 12 years, 45 % female) who completed both PET and fMRI, including individuals with BD (n = 18), major depressive disorder (MDD: n = 20), and psychiatrically healthy comparisons (HC: n = 25). RESULTS: Consistent with some prior reports, the BD group displayed greater activation during fear processing relative to MDD and HC, notably in right lateralized frontal and parietal brain regions. In BD, (but not MDD or HC) lower prefrontal mGlu5 availability was associated with greater activation in bilateral pre/postcentral gyri and cuneus during fear processing. Furthermore, greater prefrontal mGlu5-related brain activity in BD was associated with difficulties in psychomotor function (r≥0.904, p≤0.005) and attention (r≥0.809, p≤0.028). LIMITATIONS: The modest sample size is the primary limitation. CONCLUSIONS: Deficits in prefrontal mGlu5 in BD were linked to increased cortical activation during fear processing, which in turn was associated with impulsivity and attentional difficulties. These data further implicate an mGlu5-related mechanism unique to BD. More generally these data suggest integrating PET and fMRI can provide novel mechanistic insights.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Emotions , Magnetic Resonance Imaging , Positron-Emission Tomography , Prefrontal Cortex , Receptor, Metabotropic Glutamate 5 , Humans , Female , Bipolar Disorder/physiopathology , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Male , Adult , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/metabolism , Emotions/physiology , Middle Aged , Young Adult , Fear/physiology
4.
Talanta ; 275: 126167, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710128

ABSTRACT

The expression of metabotropic glutamate receptor 5 (mGluR5) is subject to developmental regulation and undergoes significant changes in neuropsychiatric disorders and diseases. Visualizing mGluR5 by fluorescence imaging is a highly desired innovative technology for biomedical applications. Nevertheless, there are substantial problems with the chemical probes that are presently accessible. In this study, we have successfully developed a two-photon fluorogenic probe, mGlu-5-TP, based on the structure of mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP). Due to this antagonist-based probe selectively recognizes mGluR5, high expression of mGluR5 on living SH-SY5Y human neuroblastoma cells has been detected during intracellular inflammation triggered by lipopolysaccharides (LPS). Of particular significance, the probe can be employed along with two-photon fluorescence microscopy to enable real-time visualization of the mGluR5 in Aß fiber-treated neuronal cells, thereby establishing a connection to the progression of Alzheimer's disease (AD). These results revealed that the probe can be a valuable imaging tool for studying mGluR5-related diseases in the nervous system.


Subject(s)
Fluorescent Dyes , Neurons , Pyridines , Receptor, Metabotropic Glutamate 5 , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Neurons/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Cell Line, Tumor , Lipopolysaccharides/pharmacology , Photons , Optical Imaging , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/analysis
5.
Exp Neurol ; 378: 114833, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782350

ABSTRACT

Gamma oscillations have been frequently observed in levodopa-induced dyskinesia (LID), manifest as broadband (60-120 Hz) and narrowband (80-110 Hz) gamma activity in cortico-striatal projection. We investigated the electrophysiological mechanisms and correlation of gamma oscillations with dyskinesia severity, while assessing the administration of fenobam, a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, in regulating dyskinesia-associated gamma activity. We conducted simultaneous electrophysiological recordings in Striatum (Str) and primary motor cortex (M1), together with Abnormal Involuntary Movement Scale scoring (AIMs). Phase-amplitude coupling (PAC), power, coherence, and Granger causality analyses were conducted for electrophysiological data. The findings demonstrated increased beta oscillations with directionality from M1 to Str in parkinsonian state. During on-state dyskinesia, elevated broadband gamma activity was modulated by the phase of theta activity in Str, while M1 â†’ Str gamma causality mediated narrowband gamma oscillations in Str. Striatal gamma power (both periodic and aperiodic power), periodic power, peak frequency, and PAC at 80 min (corresponding to the peak dyskinesia) after repeated levodopa injections across recording days (day 30, 33, 36, 39, and 42) increased progressively, correlating with total AIMs. Additionally, a time-dependent parabolic trend of PAC, peak frequency and gamma power was observed after levodopa injection on day 42 from 20 to 120 min, which also correlated with corresponding AIMs. Fenobam effectively alleviates dyskinesia, suppresses enhanced gamma oscillations in the M1-Str directionality, and reduces PAC in Str. The temporal characteristics of gamma oscillations provide parameters for classifying LID severity. Antagonizing striatal mGluR5, a promising therapeutic target for dyskinesia, exerts its effects by modulating gamma activity.


Subject(s)
Corpus Striatum , Dyskinesia, Drug-Induced , Gamma Rhythm , Animals , Gamma Rhythm/drug effects , Gamma Rhythm/physiology , Rats , Male , Dyskinesia, Drug-Induced/physiopathology , Corpus Striatum/drug effects , Corpus Striatum/physiopathology , Rats, Sprague-Dawley , Levodopa/adverse effects , Levodopa/pharmacology , Motor Cortex/drug effects , Motor Cortex/physiopathology , Imidazoles
6.
Alzheimers Res Ther ; 16(1): 9, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217040

ABSTRACT

BACKGROUND: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the initial pathophysiological mechanism of Alzheimer's disease (AD). The study aims to investigate the association between mGluR5 availability and AD's biomarkers and cognitive function. METHODS: We examined 35 individuals with mGluR5 tracer [18F]PSS232 to assess mGluR5 availability, and with [18F]Florbetapir PET to assess global amyloid deposition, and [18F]FDG PET to assess glucose metabolism. The plasma neurofilament light (NfL) and p-tau181 levels in a subset of individuals were measured (n = 27). The difference in mGluR5 availability between the AD and normal control (NC) groups was explored. The associations of mGluR5 availability with amyloid deposition, glucose metabolism, gray matter volume (GMV), neuropsychological assessment scores, and plasma biomarkers were analyzed. RESULTS: The mGluR5 availability was significantly reduced in AD patients' hippocampus and parahippocampal gyrus compared to NCs. Global amyloid deposition was positively associated with mGluR5 availability in the AD group and reversely associated in the NC group. The mGluR5 availability was positively correlated with regional glucose metabolism in the overall and stratified analyses. The availability of mGluR5 in the hippocampus and parahippocampal gyrus demonstrated a strong relationship with the GMV of the medial temporal lobe, plasma p-tau181 or NfL levels, and global cognitive performance. CONCLUSIONS: [18F]PSS232 PET can quantify the changes of mGluR5 availability in the progression of AD. mGluR5 availability correlated not only with neuropathological biomarkers of AD but also with neurodegenerative biomarkers and cognitive performance. mGluR5 may be a novel neurodegenerative biomarker, and whether mGluR5 could be a potential therapeutic target for AD needs to be further studied.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Oximes , Pyridines , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Glucose/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Receptor, Metabotropic Glutamate 5/metabolism
7.
Chronic Stress (Thousand Oaks) ; 8: 24705470231225320, 2024.
Article in English | MEDLINE | ID: mdl-38250007

ABSTRACT

Background: Understanding distinct neurobiological mechanisms underlying bipolar disorder (BD) and major depressive disorder (MDD) is crucial for accurate diagnosis and the discovery of novel and more effective targeted treatments. Previous diffusion-weighted MRI studies have suggested some common frontotemporal corticolimbic system white matter (WM) abnormalities across the disorders. However, critical to the development of more precise diagnosis and treatment is identifying distinguishing abnormalities. Promising candidates include more prominent frontotemporal WM abnormalities observed in BD in the uncinate fasciculus (UF) that have been associated with frontal-amygdala functional dysconnectivity, and with suicide that is especially high in BD. Prior work also showed differentiation in metabotropic glutamate receptor 5 (mGlu5) abnormalities in BD versus MDD, which could be a mechanism affected in the frontotemporal system. However, associations between WM and mGlu5 have not been examined previously as a differentiator of BD. Using a multimodal neuroimaging approach, we examined WM integrity alterations in the disorders and their associations with mGluR5 levels. Methods: Individuals with BD (N = 21), MDD (N = 10), and HC (N = 25) participated in structural and diffusion-weighted MRI scanning, and imaging with [18F]FPEB PET for quantification of mGlu5 availability. Whole-brain analyses were used to assess corticolimbic WM matter fractional anisotropy (FA) across BD and MDD relative to HC; abnormalities were tested for associations with mGlu5 availability. Results: FA corticolimbic reductions were observed in both disorders and altered UF WM integrity was observed only in BD. In BD, lower UF FA was associated with lower amygdala mGlu5 availability (p < .05). Conclusions: These novel preliminary findings suggest important associations between lower UF FA and lower amygdala mGlu5 levels that could represent a disorder-specific neural mechanism in which mGluR5 is associated with the frontotemporal dysconnectivity of the disorder.

8.
Front Immunol ; 14: 1274420, 2023.
Article in English | MEDLINE | ID: mdl-37954605

ABSTRACT

Introduction: Neuronal surface antibody syndromes (NSAS) encompass a growing set of autoimmune neurological disorders, with their predominant clinical presentation being autoimmune encephalitis (AE). The most extensively documented form within NSAS is anti-N-methyl-D-aspartate receptor (NMDAR) autoimmunity. In contrast, other NSAS, such as anti-metabotropic glutamate receptor-5 (mGluR5) autoimmunity, are less common and less comprehensively characterized, particularly in pediatric cases. Case description: In this instance, we present the case of a 7-year-old girl who exhibited abnormal behaviors following hematopoietic stem cell transplantation (HSCT). She received a diagnosis of anti-mGluR5 AE, and her Electroencephalogram (EEG) displayed an increased number of generalized slow waves during wakefulness. Treatment involved intravenous administration of gamma globulin and methylprednisolone, followed by oral prednisone tablets. Levetiracetam was introduced as an antiepileptic therapy during the pulse steroid therapy. Notably, the abnormal behaviors exhibited significant improvement after treatment. Conclusions: To the best of our knowledge, this is the first report of rare pediatric NSAS involving anti-mGluR5 AE following HSCT. Enhancing our understanding and characterization of this condition may facilitate its recognition and treatment in children. Serum antibody testing could enable early identification and treatment of anti-mGluR5 AE.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Hematopoietic Stem Cell Transplantation , Humans , Child , Female , Encephalitis/diagnosis , Encephalitis/drug therapy , Encephalitis/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hashimoto Disease/diagnosis , Hashimoto Disease/therapy , Receptors, Antigen, B-Cell , Syndrome
9.
Chronic Stress (Thousand Oaks) ; 7: 24705470231215001, 2023.
Article in English | MEDLINE | ID: mdl-38024327

ABSTRACT

Background: Females are twice as likely to experience post-traumatic stress disorder (PTSD) than males, yet specific factors contributing to this greater risk are not fully understood. Our clinical and recent preclinical findings suggest a role for the metabotropic glutamate receptor 5 (mGlu5) in PTSD and differential involvement between males and females. Methods: Here, we further investigate whether mGlu5 receptor availability may contribute to individual and sex differences in PTSD susceptibility by quantifying receptor availability using the mGlu5 receptor-specific radiotracer, [18F]FPEB, and positron emission tomography in male (n = 16) and female (n = 16) rats before and after traumatic footshock exposure (FE) and assessment of stress-enhanced fear learning (SEFL) susceptibility, as compared with no-shock controls (CON; n = 7 male; n = 8 female). Results: Overall, FE rats displayed greater fear generalization as compared with CON (p < .001). Further, greater mGlu5 receptor availability at baseline (p = .003) and post-test (p = .005) was significantly associated with expression of the SEFL phenotype. Notably, FE female rats displayed a shift to more passive coping (ie, freezing), and displayed greater SEFL susceptibility (p = .01), and had lower baseline mGlu5 availability (p = .03) relative to their FE male rat counterparts. Conclusion: Results are consistent with clinical findings of higher mGlu5 receptor availability in PTSD, and add to growing evidence implicating these receptors in the pathophysiology of PTSD and sex-differences in susceptibility for this disorder.

10.
Arch Biochem Biophys ; 744: 109698, 2023 08.
Article in English | MEDLINE | ID: mdl-37487948

ABSTRACT

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Parkinson Disease , Animals , Rats , alpha-Synuclein/metabolism , Autophagy/physiology , Carcinogenesis , Cell Transformation, Neoplastic , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Up-Regulation , Humans
11.
J Neurosci ; 43(31): 5593-5607, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37451981

ABSTRACT

Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with µ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.


Subject(s)
Neuralgia , Receptors, N-Methyl-D-Aspartate , Male , Female , Rats , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Analgesics, Opioid/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Rats, Sprague-Dawley , Morphine/adverse effects , Spinal Cord Dorsal Horn/metabolism , Spinal Cord/metabolism , Neuralgia/metabolism , Sensory Receptor Cells/metabolism
12.
Cells ; 12(13)2023 06 30.
Article in English | MEDLINE | ID: mdl-37443795

ABSTRACT

Sleep is an essential innate but complex behaviour which is ubiquitous in the animal kingdom. Our knowledge of the distinct neural circuit mechanisms that regulate sleep and wake states in the brain are, however, still limited. It is therefore important to understand how these circuits operate during health and disease. This review will highlight the function of mGlu5 receptors within the thalamocortical circuitry in physiological and pathological sleep states. We will also evaluate the potential of targeting mGlu5 receptors as a therapeutic strategy for sleep disorders that often co-occur with epileptic seizures.


Subject(s)
Receptor, Metabotropic Glutamate 5 , Wakefulness , Animals , Receptor, Metabotropic Glutamate 5/metabolism , Sleep/physiology , Brain/metabolism , Glutamates
13.
J Diabetes ; 15(9): 777-786, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37314019

ABSTRACT

BACKGROUND: Glutamate is a major neurotransmitter, although it causes cytotoxicity and inflammation in nonneuronal organs. This study aimed to investigate the metabolic disorders in which glutamate, associated with type 2 diabetes onset, is induced in the liver. METHODS: An analysis of Korean community-based Ansan-Ansung cohort study data as well as functional research using in vitro and mouse models were performed. RESULTS: Groups with high plasma glutamate levels (T2, T3) had a significantly increased risk of diabetes incidence after 8 years, compared to the group with relatively low glutamate levels (T1). Analysis of the effect of glutamate on diabetes onset in vitro showed that glutamate induces insulin resistance by increasing glucose-related protein 78 (GRP78) and phosphoenolpyruvate carboxykinase (PEPCK) expression in SK-Hep-1 human liver cells. In addition, three different genes, FRMB4B, PLG, and PARD3, were significantly associated with glutamate and were identified via genome-wide association studies. Among glutamate-related genes, plasminogen (PLG) levels were most significantly increased in several environments in which insulin resistance was induced, and was also upregulated by glutamate. Glutamate-induced increase in PLG in liver cells was caused by metabotropic glutamate receptor 5 activation, and PLG levels were also upregulated after extracellular secretion. Moreover, glutamate increased the expression of plasminogen activator inhibitor-1 (PAI-1). Thus, extracellular secreted PLG cannot be converted to plasmin (fibrinolytic enzyme) by increased PAI-1. CONCLUSIONS: Increased glutamate is closely associated with the development of diabetes, and it may cause metabolic disorders by inhibiting the fibrinolytic system, which plays an important role in determining blood clots, a hallmark of diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Humans , Plasminogen/genetics , Plasminogen/metabolism , Plasminogen Activator Inhibitor 1 , Glutamic Acid , Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Cohort Studies , Genome-Wide Association Study , Republic of Korea/epidemiology
14.
J Biol Chem ; 299(8): 104949, 2023 08.
Article in English | MEDLINE | ID: mdl-37354970

ABSTRACT

Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.


Subject(s)
Neuronal Plasticity , Receptor, Metabotropic Glutamate 5 , Signal Transduction , Carrier Proteins/genetics , Neuronal Plasticity/physiology , Phosphatidylinositol 3-Kinases/genetics , Synaptic Transmission , Animals , Mice , Receptor, Metabotropic Glutamate 5/metabolism
15.
Brain Behav ; 13(5): e3003, 2023 05.
Article in English | MEDLINE | ID: mdl-37060179

ABSTRACT

OBJECTIVE: To describe the clinical and radiological characteristics of anti-metabotropic glutamate receptor 5 (mGluR5) encephalitis. METHODS: We reviewed the clinical data of five patients with anti-mGluR5 encephalitis, and performed a literature review. RESULTS: The five cases included a 52-year-old man who developed a biphasic course of anti-mGluR5 encephalitis after herpes simplex encephalitis, a 22-year-old woman who showed bilateral basal ganglia lesions on brain magnetic resonance imaging (MRI), and a 36-year-old man with mixed aphasia and generalized tonic-clonic seizures, a 51-year-old man presented with personality changes, hallucinations, delusions, sleeping disorders and a 58-year-old man with short-term memory deficits and absence seizures.. There are 16 reported cases of anti-mGluR5 encephalitis worldwide. Of all 21 patients, with a median onset age of 35 years old, the main neurological symptoms were cognitive impairment (85.7%, 18/21), psychiatric or behavior problems (76.2%, 16/21), seizures (57.1%, 12/21), sleeping disorders (52.4%, 11/21), different degrees of decreased consciousness (42.9%, 9/21), and movement disorders (23.8%, 5/21). Brain MRI was normal in 11 of 21 patients. Lesions of the limbic lobes were presented in 5 patients, while involvement of other extralimbic regions was also reported. Seven of 21 (33.3%) cases were combined with tumors. Elevated white blood cell counts or specific oligoclonal IgG bands in the cerebrospinal fluid were found in 18 of 21 patients, with marked improvements observed after immunotherapy. DISCUSSION: Patients with anti-mGluR5 encephalitis typically present with diffuse, rather than purely limbic, encephalitis. Anti-mGluR5 encephalitis can be triggered by herpes simplex encephalitis. The risk of a combined tumor may be reduced in anti-mGluR5 encephalitis patients.


Subject(s)
Encephalitis, Herpes Simplex , Limbic Encephalitis , Movement Disorders , Male , Female , Humans , Adult , Young Adult , Middle Aged , Encephalitis, Herpes Simplex/diagnostic imaging , Encephalitis, Herpes Simplex/drug therapy , Encephalitis, Herpes Simplex/complications , Brain , Limbic Encephalitis/complications , Seizures/etiology , Movement Disorders/complications , Magnetic Resonance Imaging
16.
Front Immunol ; 14: 1146536, 2023.
Article in English | MEDLINE | ID: mdl-37025999

ABSTRACT

Background: Only 15 patients of autoimmune encephalitis with metabotropic glutamate receptor 5 (mGluR5) antibodies have been reported worldwide since 2011, mostly from western countries. Patients with different genetic backgrounds are necessary to further clarify the clinical phenotype and prognosis of this rare disease. Objective: We initially describe a case series from China to confirm the previous findings, expand the clinical phenotype, and identify the prognostic factors of autoimmune encephalitis with mGluR5 antibodies. Methods: Observational data with follow-up were prospectively collected from autoimmune encephalitis patients with mGluR5 antibodies. Clinical information and outcomes on current and previously reported cases were combined and analyzed. Results: We identified five patients (median age 35 years); two were female. The main clinical manifestations were behavioral/personality changes (five of five, 100%) and cognitive disorders (four of five, 80%), accompanied with other neurologic symptoms. Hypoventilation occurred in two (40%) patients, which was life-threatening. One patient had meningoencephalitis, suggesting a new phenotype in anti-mGluR5 encephalitis. All patients received immunotherapy. At the last follow-up (median 18 months), two (40%) patients showed complete recovery, two (40%) patients showed partial recovery, and one (20%) patient died. One (20%) patient had multiple relapses. Together with the 15 previously reported cases, associated tumors occurred in seven of 12 (58%) Western patients vs. one of eight (13%) Chinese patients. Modified Rankin Scale (mRS) scores at the last follow-up (median 31 months) were available in 16 patients. Patients with bad outcomes (mRS > 2, n = 4) were more likely to have hypoventilation at onset and higher mRS scores at peak of the disease. Conclusions: In patients with different genetic background, as Chinese, the clinical phenotype of anti-mGluR5 encephalitis is similar. Fewer paraneoplastic cases were observed in Chinese patients. Most patients showed good responses to immunotherapy and cancer treatment. The clinical outcomes were favorable in most patients.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Female , Humans , Male , Autoantibodies , Autoimmune Diseases of the Nervous System/complications , Encephalitis/diagnosis , Encephalitis/therapy , Encephalitis/complications , Hypoventilation/complications , Observational Studies as Topic , Receptor, Metabotropic Glutamate 5 , Adult
17.
Biochem Biophys Res Commun ; 653: 1-11, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36842305

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease characterized by ectopic lipid accumulation in hepatocytes. To date, no specific drug has been approved for its treatment. Metabotropic glutamate receptor 5 (mGluR5) has been showed expressed in hepatocytes and related to some liver diseases such as alcoholic steatosis. However, the function of mGluR5 in NAFLD is not clear. This work aims to investigate the effect and potential mechanism of mGluR5 in NAFLD. We found that mGluR5 expression was increased in the livers of HFD-fed mice and in palmitate-treated HepG2 cells. Suppression of mGluR5 by the specific antagonist MPEP could ameliorate palmitate-induced lipid accumulation, whereas the mGluR5 agonist CHPG promoted lipid deposition in the cells. Knockdown of mGluR5 by small interfering RNA further demonstrated that inhibition of mGluR5 could reduce lipid accumulation. Furthermore, our results revealed that mGluR5 regulated lipid metabolism by increasing the gene expression of lipogenesis. Inflammatory factors and phosphorylation levels of NF-κB-p65 and JNK were also tested in treated hepatocytes. mGluR5 promoted the inflammatory reaction and JNK phosphorylation. Inhibition of JNK signaling by JNK-IN-8 rescued CHPG-induced lipogenesis and inflammation. This study showed mGluR5 regulated lipid accumulation and inflammation in palmitic acid-treated HepG2 cells via the JNK signaling pathway. mGluR5 might be a potential drug target for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Diet, High-Fat , Hep G2 Cells , Hepatocytes/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Palmitates/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/therapeutic use
18.
Nucl Med Biol ; 116-117: 108309, 2023.
Article in English | MEDLINE | ID: mdl-36521341

ABSTRACT

INTRODUCTION: [18F]FMTEB, along with other tracers, was developed as a promising PET radioligand for imaging metabotropic glutamate receptor subtype 5 (mGluR5). Despite favorable preliminary results, it has not been used further for studies of mGluR5. This paper presents an in-depth preclinical evaluation of [18F]FMTEB in healthy Sprague Dawley rats. METHODS: [18F]FMTEB was synthesized from a boronic ester precursor using copper-mediated fluorination. In vivo PET imaging was performed on six rats, of which three were pre-treated with a high affinity mGluR5 receptor antagonist. An additional 18 rats were used for ex vivo experiments for metabolite analyses in plasma, brain and urine, and for biodistribution and ex vivo brain autoradiography at different time points. RESULTS: [18F]FMTEB was synthesized in adequate radiochemical yield and a molar activity of 154 ± 64 GBq/µmol. Both in vivo imaging and ex vivo brain autoradiography showed high specificity for mGluR5, and the blocking experiments showed a clear decrease in radioactivity in mGluR5-rich brain areas. Metabolite analyses confirmed fast metabolism of the tracer in plasma. The percentage of parent compound in brain tissue exceeded 90 % up to 90 min after injection. CONCLUSION: [18F]FMTEB produced via copper-mediated 18F-fluorination fulfilled the requirements for preclinical evaluation in rats. The absence of specific uptake in cerebellum and absence of defluorination of the tracer allowed cerebellum to be used as a reference tissue. Due to the fast kinetics in rats, the region-to-cerebellum ratios equilibrated within 30 min. These results prove [18F]FMTEB to be a good candidate for mapping mGluR5 in rat brain and a suitable alternative to [18F]FPEB.


Subject(s)
Copper , Receptor, Metabotropic Glutamate 5 , Rats , Animals , Receptor, Metabotropic Glutamate 5/metabolism , Rats, Sprague-Dawley , Tissue Distribution , Positron-Emission Tomography/methods , Pyridines/chemistry , Brain/metabolism , Radiopharmaceuticals/metabolism
19.
Neuropsychiatr Dis Treat ; 18: 2041-2053, 2022.
Article in English | MEDLINE | ID: mdl-36124236

ABSTRACT

Background: Previous research has shown that metabotropic glutamate receptor-5 (mGluR5) signaling is significantly involved in social avoidance. We investigated the relationship between levels of social avoidance and mGluR5 availability in drug-naïve young patients with major depressive disorder (MDD). Methods: Twenty non-smoking patients and eighteen matched non-smoking healthy controls underwent [11C]ABP688 positron emission tomography (PET) and magnetic resonance imaging scans. The binding potential (BPND) of [11C]ABP688 was obtained using the simplified reference tissue model. Patients' level of social avoidance was assessed using the Social Avoidance and Distress Scale (SADS). For [11C]ABP688 BPND, the region-of-interest (ROI)-based between-group comparisons and correlations with SADS scores were investigated. The frontal cortices were chosen as a priori ROIs based on previous PET investigations in MDD, and on literature underscoring the importance of the frontal cortex in social avoidance. Results: Independent samples t-tests revealed no significant differences in [11C]ABP688 BPND in the frontal cortices between the MDD patient group as a whole and healthy controls. One-way analysis of variance with post-hoc tests revealed significantly lower BPND in the bilateral superior frontal cortex (SFC) and left middle frontal cortex (MFC) in MDD patients with low levels of social avoidance (L-SADS) than in healthy controls. The L-SADS patients also had significantly lower BPND in the medial part of the right SFC than both MDD patients with high levels of social avoidance (H-SADS) and healthy controls. The L-SADS patients also showed significantly lower BPND in the orbital parts of the SFC, MFC, and inferior frontal cortex than H-SADS patients. No significant group differences were found between H-SADS patients and healthy controls. The ROI-based correlation analysis revealed significant positive correlations between social avoidance levels and frontal [11C]ABP688 BPND in the entire patients. Conclusion: Our exploratory study shows significant differences in frontal mGluR5 availability depending on the level of social avoidance in drug-naïve non-smoking MDD patients, suggesting that social avoidance should be considered as one of the clinical factors involved in mGluR5 signaling changes in depression.

20.
Front Immunol ; 13: 919125, 2022.
Article in English | MEDLINE | ID: mdl-35990698

ABSTRACT

A 38-year-old Chinese Han man presented with fever, headache and difficulty in language expression. The initial cerebrospinal fluid (CSF) analysis revealed lymphocytic-predominant pleocytosis with a normal glucose level, and magnetic resonance imaging (MRI) showed extensive cortical edema in left cerebral hemisphere. He received the antiviral treatment. However, one week later, he developed psychomotor agitation and seizures. Lumbar puncture was performed again and further testing for autoantibodies was conducted in both the CSF and serum. His CSF was positive for anti-myelin oligodendrocyte glycoprotein (MOG), anti-N-methyl-D-aspartate receptor (NMDAR) and anti-metabotropic glutamate receptor 5 (mGluR5) antibodies. He was diagnosed with overlapping syndrome of MOG antibody-related cerebral cortical encephalitis and anti-NMDAR, anti-mGluR5 autoimmune encephalitis. He received intravenous methylprednisolone and immunoglobulin, followed by oral prednisone and mycophenolate mofetil. His psychomotor agitation and seizures were relieved, and he gradually recovered his language expression ability. We reported for the first time a case that was positive for coexistent MOG, NMDAR, mGluR5 antibodies, which was initially misdiagnosed as infectious meningoencephalitis. This case widens the clinical spectrum of the overlapping syndrome recently reported.


Subject(s)
Autoimmune Diseases , Connective Tissue Diseases , Encephalitis , Meningoencephalitis , Humans , Male , Meningoencephalitis/diagnosis , Meningoencephalitis/drug therapy , Myelin-Oligodendrocyte Glycoprotein , Psychomotor Agitation , Receptors, N-Methyl-D-Aspartate , Seizures , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL