Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Alzheimers Dement ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210637

ABSTRACT

INTRODUCTION: Blood-derived microRNAs (miRNAs) are potential candidates for detecting and preventing subclinical cognitive dysfunction. However, replication of previous findings and identification of novel miRNAs associated with cognitive domains, including their relation to brain structure and the pathways they regulate, are still lacking. METHODS: We examined blood-derived miRNAs and miRNA co-expression clusters in relation to cognitive domains, structural magnetic resonance imaging measures, target gene expression, and genetic variants in 2869 participants of a population-based cohort. RESULTS: Five previously identified and 14 novel miRNAs were associated with cognitive domains. Eleven of these were also associated with cortical thickness and two with hippocampal volume. Multi-omics analysis showed that certain identified miRNAs were genetically influenced and regulated genes in pathways like neurogenesis and synapse assembly. DISCUSSION: We identified miRNAs associated with cognitive domains, brain regions, and neuronal processes affected by aging and neurodegeneration, making them promising candidate blood-based biomarkers or therapeutic targets of subclinical cognitive dysfunction. HIGHLIGHTS: We investigated the association of blood-derived microRNAs with cognitive domains. Five previously identified and 14 novel microRNAs were associated with cognition. Eleven cognition-related microRNAs were also associated with cortical thickness. Identified microRNAs were linked to genes associated with neuronal functions. Results provide putative biomarkers or therapeutic targets of cognitive aging.

2.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957039

ABSTRACT

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Subject(s)
Adaptor Proteins, Signal Transducing , Cardiovascular Diseases , Cellular Senescence , Endothelial Progenitor Cells , Leukocytes, Mononuclear , MicroRNAs , p38 Mitogen-Activated Protein Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Endothelial Progenitor Cells/metabolism , Cellular Senescence/genetics , Leukocytes, Mononuclear/metabolism , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Female , Aged , Neovascularization, Physiologic/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Adult , Risk Factors
3.
Aging (Albany NY) ; 16(7): 6510-6520, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38579169

ABSTRACT

Our research investigated the effects of hsa-miR-134-5p on glioma progression, focusing on its interaction with the BDNF/ERK signaling pathway. U251 and U87 cell lines were analyzed post-transfection with hsa-miR-134-5p mimics and inhibitors, confirming the miRNA's binding to BDNF using dual luciferase assays. Q-PCR was employed to measure expression changes, revealing that hsa-miR-134-5p markedly inhibited glioma cell proliferation, migration, and invasion, as evidenced by CCK8, monoclonal formation, and Transwell assays. Scratch tests and Western blotting demonstrated hsa-miR-134-5p's modulation of the BDNF/ERK pathway and associated decrease in MMP2/9 protein levels. Flow cytometry suggested that hsa-miR-134-5p might also block the G0/S phase transition. In vivo studies using nude mice corroborated the tumor-suppressing effects of hsa-miR-134-5p, which were negated by elevated BDNF levels. Comparative protein analysis across groups confirmed the pathway's significance in tumorigenesis. Our findings identify hsa-miR-134-5p as a key molecule impeding glioma cell growth by curtailing the BDNF/ERK pathway, with the reversal by BDNF upregulation pointing to the potential of therapeutically exploiting the hsa-miR-134-5p/BDNF axis in glioma care.


Subject(s)
Brain-Derived Neurotrophic Factor , Cell Movement , Cell Proliferation , Glioma , MAP Kinase Signaling System , Mice, Nude , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Glioma/pathology , Glioma/metabolism , Glioma/genetics , Humans , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Animals , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics
4.
J Orthop Surg Res ; 19(1): 128, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326867

ABSTRACT

OBJECTIVE: Osteoporosis is the imbalance in bone homeostasis between osteoblasts and osteoclasts. In this study, we investigated the effects of the circ_0029463/miR-134-5p/Rab27a axis on RANKL-induced osteoclast differentiation. METHODS: RT-qPCR and western blotting were used to detect the expression of circ_0029463, miR-134-5p, and Rab27a in tissues from patients with osteoporosis and in RANKL-induced osteoclasts. Osteoclast differentiation was verified by TRAP staining. Osteoclast biomarkers, including NFATc1, TRAP, and CTSK, were measured. The target and regulatory relationships between circ_0029463, miR-134-5p, and the Rab27a axis were verified using RIP, dual-luciferase reporter gene, and RNA pull-down assays. RESULTS: Elevated expression of circ_0029463 and Rab27a and decreased miR-134-5p expression were observed in the tissues of patients with osteoporosis, and a similar expression pattern was observed in RANKL-induced osteoclasts. Suppression of circ_0029463 expression or miR-134-5p overexpression curbed RANKL-induced osteoclast differentiation, whereas such an effect was abolished by Rab27 overexpression. circ_0029463 sponges miR-134-5p to induce Rab27a expression. CONCLUSION: circ_0029463 sponges miR-134-5p to abolish its suppressive effect of miR-134-5p on Rab27a expression, thereby promoting osteoclast differentiation.


Subject(s)
MicroRNAs , Osteoporosis , Humans , Blotting, Western , Cell Proliferation , MicroRNAs/genetics , Osteoblasts , Osteoclasts , RNA, Circular/genetics
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 109-122, 2024 01.
Article in English | MEDLINE | ID: mdl-37368030

ABSTRACT

It has been reported the anti-tumor action of curcumin on colorectal cancer. In this study, we aimed to explore the potential mechanisms underlying curcumin in the development of colorectal cancer. CCK-8, EdU, flow cytometry, and transwell invasion assays were conducted to investigate the function role of curcumin in cell proliferation, apoptosis, and invasion. The level of miR-134-5p and CDCA3 was determined using RT-qPCR analysis. Western blot was applied for detecting the levels of c-myc, MMP9, CDCA3, and CDK1. Dual-luciferase reporter assay was used to evaluate the relationship between miR-134-5p and CDCA3, and IP assay was performed to examine the interaction between CDCA3 and CDK1. Additionally, SW620 cells were injected into the mice to form the xenograft tumor model. Curcumin treatment repressed cell growth and invasion, and induced cell apoptosis in HCT-116 and SW620 cells. Curcumin elevated miR-134-5p expression and restrained CDCA3 expression in HCT-116 and SW620 cells. MiR-134-5p inhibitor or CDCA3 overexpression could restore the effects of curcumin on cell growth, apoptosis, and invasion in HCT-116 and SW620 cells. MiR-134-5p targeted CDCA3, and CDCA3 could rescue the repressive effects of miR-134-5p on the progression of colorectal cancer. Moreover, CDCA3 interacted with CDK1, and CDK1 overexpression blocked the suppressive effects of CDCA3 downregulation on the development of colorectal cancer. In addition, curcumin treatment repressed tumor growth in colorectal cancer via increasing miR-134-5p and downregulating CDCA3 and CDK1 expression in vivo. Our findings provided the evidence that curcumin upregulated miR-134-5p to inhibit the progression of colorectal cancer by regulating CDCA3/CDK1 pathway.


Subject(s)
Colorectal Neoplasms , Curcumin , MicroRNAs , Humans , Animals , Mice , MicroRNAs/metabolism , Curcumin/pharmacology , Cell Proliferation/physiology , Down-Regulation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism
6.
Cells ; 12(21)2023 10 31.
Article in English | MEDLINE | ID: mdl-37947633

ABSTRACT

The successful establishment of endometrial receptivity is a key factor in ensuring the fertility of ewes and their economic benefits. Hu sheep have attracted attention due to their high fecundity and year-round estrus. In this study, we found that in the luteal phase, the uterine gland density, uterine coefficient, and number of uterine caruncles of high-fertility Hu sheep were higher than those of low-fertility Hu sheep. Thousands of differentially expressed genes were identified in the endometrium of Hu sheep with different fertility potential using RNA sequencing (RNA-Seq). Several genes involved in endometrial receptivity were screened using bioinformatics analysis. The qRT-PCR analysis further revealed the differential expression of cAMP reactive element binding protein-1 (CREB1) in the Hu sheep endometrium during the estrous cycle. Functionally, our results suggested that CREB1 significantly affected the expression level of endometrial receptivity marker genes, promoted cell proliferation by facilitating the transition from the G1 phase to the S phase, and inhibited cell apoptosis and autophagy. Moreover, we observed a negative linear correlation between miR-134-5p and CREB1 in the endometrium. In addition, CREB1 overexpression prevented the negative effect of miR-134-5p on endometrial stromal cell (ESC) growth. Taken together, these data indicated that CREB1 was regulated by miR-134-5p and may promote the establishment of uterine receptivity by regulating the function of ESCs. Moreover, this study provides new theoretical references for identifying candidate genes associated with fertility.


Subject(s)
MicroRNAs , Female , Animals , Sheep/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Autophagy/genetics , Apoptosis/genetics , Stromal Cells/metabolism
7.
Mikrochim Acta ; 190(12): 491, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38030848

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants with increased levels of reactive oxygen species (ROS) and ferroptosis. Herein, we designed a peptide-based nanoparticle to deliver therapeutic molecules to pulmonary, thereby ameliorating BPD. The BPD-induced damages of lung tissues were detected by H&E and immunohistochemistry staining. Inflammatory cytokines, Fe2+, and ROS levels were quantified by the indicated kits, respectively. The targeting relationship was verified by luciferase reporter assay and pull-down assay. Subsequently, self-assembled miR-134-5p inhibitor nanoparticles with pulmonary epithelial cell-targeting were synthesized. The characteristics were detected by transmission electron microscopy, luminescence imaging, and dynamic light scattering. A significant ferroptosis was observed in the BPD mice. The protein level of GPX4 was decreased significantly compared to the control group. Constantly, miR-134-5p showed positive regulation on ferroptosis by targeting GPX4. The designed nanoparticles were mainly accumulated in the lung region. Besides, it ameliorated experimental bronchopulmonary dysplasia via suppressing ferroptosis, in vivo and in vitro. Our findings provided a miR-134-5p/GPX4 axis in regulating ferroptosis of BPD and prompted the potential of applying the peptide-based nanoparticle to BPD treatment.


Subject(s)
Bronchopulmonary Dysplasia , Ferroptosis , MicroRNAs , Nanoparticles , Humans , Infant , Infant, Newborn , Animals , Mice , Bronchopulmonary Dysplasia/drug therapy , Reactive Oxygen Species , Cytokines
8.
Environ Toxicol ; 38(12): 2952-2966, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37615249

ABSTRACT

OBJECTIVE: Circular RNAs (circRNAs), a new subgroup of non-coding RNAs in the human transcriptome, are crucial in atherosclerosis (AS). Here, a newly identified circRNA circDLGAP4 was demonstrated to be downregulated in oxidized forms of low-density lipoprotein (ox-LDL)-induced HUVECs. METHODS: This research adopted ox-LDL to stimulate human umbilical vein endothelial cells (HUVECs) to mimic AS in vitro. To further validate the protective action of circDLGAP4 in AS, a mouse model of AS was constructed with a high-fat diet. Functional assays evaluated circDLGAP4 role in AS in vitro and in vivo. Moreover, mechanism assays evaluated association of circDLGAP4/miR-134-5p/PTPN4. RESULTS: CircDLGAP4 was induced to promote cell proliferative behavior and autophagy, inhibit apoptotic and inflammatory activities in ox-LDL-treated HUVECs, and attenuated endothelial barrier function. CircDLGAP4 regulated PTPN4 by directly targeting miR-134-5p. Meanwhile, inhibiting miR-134-5p reduced ox-LDL-induced cell dysfunction. Knockout of PTPN4 reversed circDLGAP4 overexpression or miR-134-5p downregulation in vitro. In addition, reducing circDLGAP4 or overexpressing miR-134-5p increased the red atherosclerotic plaque and lesion area of AS mice, reduced autophagy level, and promoted the release of inflammatory cytokines. CONCLUSION: This study extends the role of circRNA in AS by inducing autophagy and improving endothelial dysfunction in AS via the circDLGAP4/miR-134-5p/PTPN4 axis.


Subject(s)
Atherosclerosis , MicroRNAs , RNA, Circular , Animals , Humans , Mice , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/pathology , Autophagy , Human Umbilical Vein Endothelial Cells/pathology , Mice, Knockout , MicroRNAs/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 4 , RNA, Circular/genetics
9.
Mol Pain ; 19: 17448069231178271, 2023.
Article in English | MEDLINE | ID: mdl-37247385

ABSTRACT

Background: Fentanyl and its analogs are extensively used for pain relief. However, their paradoxically pronociceptive effects often lead to increased opioids consumption and risk of chronic pain. Compared to other synthetic opioids, remifentanil has been strongly linked to acute opioid hyperalgesia after exposure [remifentanil-induced hyperalgesia (RIH)]. The epigenetic regulation of microRNAs (miRNAs) on targeted mRNAs has emerged as an important pathogenesis in pain. The current research aimed at exploring the significance and contributions of miR-134-5p to the development of RIH. Methods: Both the antinociceptive and pronociceptive effects of two commonly used opioids were assessed, and miRNA expression profiles in the spinal dorsal horn (SDH) of mice acutely exposed to remifentanil and remifentanil equianalgesic dose (RED) sufentanil were screened. Next, the candidate miRNA level, cellular distribution, and function were examined by qPCR, fluorescent in situ hybridization (FISH) and Argonaute-2 immunoprecipitation. Furthermore, bioinformatics analysis, luciferase assays, miRNA overexpression, behavioral tests, golgi staining, electron microscopy, whole-cell patch-clamp recording, and immunoblotting were employed to investigate the potential targets and mechanisms underlying RIH. Results: Remifentanil induced significant pronociceptive effects and a distinct miRNA-profile from sufentanil when compared to saline controls. Among top 30 differentially expressed miRNAs spectrum, spinal miR-134-5p was dramatically downregulated in RIH mice but remained comparative in mice subjected to sufentanil. Moreover, Glutamate Receptor Ionotropic Kainate 3 (Grik3) was a target of miR-134-5p. The overexpression of miR-134-5p attenuated the hyperalgesic phenotype, excessive dendritic spine remodeling, excitatory synaptic structural plasticity, and Kainate receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in SDH resulting from remifentanil exposure. Besides, intrathecal injection of selective KA-R antagonist was able to reverse the GRIK3 membrane trafficking and relieved RIH. Conclusion: The miR-134-5p contributes to remifentanil-induced pronociceptive features via directly targeting Grik3 to modulate dendritic spine morphology and synaptic plasticity in spinal neurons.


Subject(s)
Analgesics, Opioid , MicroRNAs , Animals , Mice , Analgesics, Opioid/adverse effects , Epigenesis, Genetic , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , In Situ Hybridization, Fluorescence , Kainic Acid/adverse effects , MicroRNAs/genetics , Pain , Piperidines/adverse effects , Receptors, Glutamate/metabolism , Remifentanil/pharmacology , Sufentanil/adverse effects
10.
J Endocrinol Invest ; 46(4): 713-725, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36227499

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have essential roles in the malignant progression of papillary thyroid carcinoma (PTC). Circ_0002111 was reported to facilitate cell proliferation and invasion abilities in PTC. This study was performed to explore the regulatory mechanism of circ_0002111 in PTC progression. METHODS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used for the level detection of circ_0002111, microRNA-134-5p (miR-134-5p) and Follistatin Like 1 (FSTL1). Cell proliferation was assessed by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay, EdU assay and colony formation assay. Cell migration ability was determined by transwell assay. Glycolysis was analyzed by extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption and lactate production. The protein quantification was performed through western blot. Xenograft tumor assay was used for the functional analysis of circ_0002111 in vivo. The target interaction was confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS: The significant upregulation of circ_0002111 was detected in PTC samples and cells. PTC cell proliferation, migration and glycolytic metabolism were suppressed after circ_0002111 downregulation. PTC tumorigenesis in vivo was also inhibited by circ_0002111 knockdown. In addition, circ_0002111 could target miR-134-5p and si-circ_0002111#1-induced inhibition of PTC progression was relieved by miR-134-5p expression downregulation. Furthermore, FSTL1 was a target gene for miR-134-5p and miR-134-5p served as a tumor repressor in PTC by targeting FSTL1. Moreover, circ_0002111 could increase the FSTL1 level via sponging miR-134-5p. CONCLUSION: All results indicated that circ_0002111 promoted the malignant behaviors of PTC cells partly by regulating the miR-134-5p/FSTL1 molecular network.


Subject(s)
Follistatin-Related Proteins , MicroRNAs , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Cell Proliferation , Thyroid Neoplasms/genetics , MicroRNAs/genetics , Cell Line, Tumor
11.
Life (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295083

ABSTRACT

Mesenchymal stem cells (MSCs) are critical in regenerating tissues because they can differentiate into various tissue cells. MSCs interact closely with cells in the tissue microenvironment during the repair of damaged tissue. Although regarded as non-healing wounds, tumors can be treated by MSCs, which showed satisfactory treatment outcomes in previous reports. However, it is largely unknown whether the biological behaviors of MSCs would be affected by the tumor microenvironment. Exploring the truth of tumor microenvironmental cues driving MSCs tumor "wound" regeneration would provide a deeper understanding of the biological behavior of MSCs. Therefore, we mimicked the tumor microenvironment using co-cultured glioma C6 cells and rat MSCs, aiming to assess the proliferation and migration of MSCs and the associated effects of Stat3 in this process. The results showed that co-cultured MSCs significantly exhibited enhanced tumorigenic, migratory, and proliferative abilities. Both up-regulation of Stat3 and down-regulation of miR-134-5p were detected in co-cultured MSCs. Furthermore, miR-134-5p directly regulated Stat3 by binding to the sequence complementary to microRNA response elements in the 3'-UTR of its mRNA. Functional studies showed that both the migration and proliferation abilities of co-cultured MSCs were inhibited by miR-134-5p, whereas Stat3 gain-of-function treatment reversed these effects. In addition, Pvt1 was confirmed to be regulated by miR-134-5p through Stat3 and the suppression of Pvt1 reduced the migration and proliferation abilities of co-cultured MSCs. To sum up, these results demonstrate a suppressive role of miR-134-5p in tumor-environment-driven malignant transformation of rat MSCs through directly targeting Stat3, highlighting a crucial role of loss-of-function of miR-134-5p/Stat3 axis in the malignant transformation, providing a reference to the potential clinic use of MSCs.

12.
J Biol Chem ; 298(7): 102116, 2022 07.
Article in English | MEDLINE | ID: mdl-35691339

ABSTRACT

Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.


Subject(s)
MicroRNAs/metabolism , Osteoporosis , Animals , Antagomirs , Cell Differentiation , Humans , Mice , Mice, Inbred C57BL , Osteogenesis , Osteoporosis/genetics , Quality of Life , RNA, Small Interfering/pharmacology
13.
Neuropharmacology ; 214: 109154, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35659969

ABSTRACT

Neuronal dendrites and dendritic spines are essential for normal synaptic transmission and may be critically involved in the pathophysiology of various neurological disorders, including depression. Emerging data supports the role of mitochondria in dendritic protrusions in modulating the development and morphological plasticity of spines. Mitophagy, a mitochondria-specific form of autophagy, is the fundamental process of clearing damaged mitochondria to maintain cellular homeostasis. As a brain-specific microRNA, miR-134 is localized to the synaptodendritic compartment of hippocampal neurons and negatively regulates the development of dendritic spines. However, the role of miR-134 in mitophagy related to dendritic deficits in the pathophysiology of depression remains unclear. In this study, we showed that miR-134-5p knockdown abrogated depression-like behavioral symptoms and corrected aberrant spine morphology in hippocampal neurons of chronic unpredictable mild stress (CUMS) mice. Moreover, knockdown of miR-134-5p triggered autophagy in dendrites, improved mitochondrial impairment, and induced the generation of autophagosomes in the hippocampus of CUMS mice. We further found that AMP-activated protein kinase (AMPK), which mediates the impairment of defective mitochondria via mitophagy, can bind directly to miR-134-5p and is negatively regulated by this miRNA. This study demonstrates that miR-134-5p exerts an enormous effect on dendritic deficits by promoting AMPK-mediated mitophagy and provides a potential new target for antidepressant drug research and development.


Subject(s)
MicroRNAs , Mitophagy , AMP-Activated Protein Kinases , Animals , Depression/genetics , Depression/metabolism , Disease Models, Animal , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Bioengineered ; 13(4): 9662-9673, 2022 04.
Article in English | MEDLINE | ID: mdl-35412941

ABSTRACT

Circular RNAs (circRNAs) are crucial non-coding RNAs in the process of tumorigenesis. Nevertheless, the biological function of circ_0004277 in acute myeloid leukemia (AML) is blurred. Microarray data of circRNAs were utilized to evaluate circRNAs' differential expression in AML. Quantitative real-time polymerase chain reaction (qRT-PCR) was executed to determine circ_0004277 and microRNA-134-5p (miR-134-5p) expression levels. The growth, migration and invasion of AML cells were tested by the cell counting kit-8 and Transwell experiment. Dual-luciferase reporter gene experiment, RNA immunoprecipitation (RIP) experiment and RNA pull-down experiment were executed to determine the targeting relationship between circ_0004277 and miR-134-5p. Western blot assay was used to detect single stranded DNA binding protein 2 (SSBP2) expression. We observed that circ_0004277 was down-regulated in AML, while miR-134-5p was up-regulated. Functionally, circ_0004277 overexpression or inhibition of miR-134-5p remarkably suppressed AML cell viability, migration and invasion. Furthermore, miR-134-5p served as a direct downstream target of circ_0004277 and SSBP2 was identified as a target of miR-134-5p. Compensation experiments showed that miR-134-5p mimics abolished the biological function of circ_0004277 on malignant phenotypes of AML cells. Collectively, circ_0004277 impedes AML development by adsorbing miR-134-5p and up-regulating SSBP2.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Cell Proliferation/genetics , DNA-Binding Proteins , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
15.
Bioengineered ; 13(4): 10578-10593, 2022 04.
Article in English | MEDLINE | ID: mdl-35440286

ABSTRACT

Recent studies have shown that circRNAs can act as oncogenic factors or tumor suppressors by sponging microRNAs (miRNAs). The upregulation of circ_0023984 was reported in esophageal squamous cell carcinoma (ESCC). However, its functional role in ESCC remain unclear. In the present study, circ_0023984 expression in ESCC cells and tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). Subcellular fraction experiment was performed to determine relative nuclear-cytoplasmic localization. The loss-of-function effects of circ_0023984 in ESCC cell lines were investigated by shRNA-mediated knockdown. Functional assays including cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EDU) incorporation, colony formation and Transwell migration assays were conducted to assess the malignant phenotype. The interaction between the two molecules was analyzed by RNA pull-down, luciferase reporter assay and RNA immunoprecipitation (RIP). The subcutaneous tumor model in nude mice was used to assess the role of circ-0023984 in tumorigenesis. We found that ESCC patients with high circ_0023984 expression was associated with a poor prognosis. The knockdown of circ_0023984 suppressed cell growth, invasion, and migration in ESCC cells. Circ_0023984 interacted with miR-134-5p and inhibited its activity, which promoted the expression of CST4 (Cystatin-S). Circ_0023984 also regulated tumorigenesis in a CST4-dependent manner. Together, our study indicates that the oncogenic role of Circ_0023984 is mediated by miR-134-5p/CST4 Axis in ESCC, which could serve as potential targets for future therapeutic strategies.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
16.
Bioengineered ; 13(3): 6929-6941, 2022 03.
Article in English | MEDLINE | ID: mdl-35236250

ABSTRACT

Emerging evidence has revealed that aberrantly expressed circular RNAs (circRNAs) play vital roles in tumorigenesis and progression of diverse human malignancies. CircZNF609 was found to be involved in hepatocellular carcinoma, but the role and underlying mechanism of circZNF609 in laryngeal squamous cell carcinoma (LSCC) remain unclear. This study aimed to explore the molecular mechanism of circZNF609 in LSCC. qRT-qPCR was performed to detect the expression of circZNF609 and microRNA-134-5p (miR-134-5p) in LSCC. Colony formation assay, CCK-8 assay, BrdU incorporation assay, clone formation assay, transwell invasion assay and Western blot analysis were performed to evaluate LSCC cell proliferation, as well as the expression of proliferating cell nuclear antigen (PCNA) and MMP-2. Luciferase reporter assay, target gene prediction and screening were used to validate downstream target genes of circZNF609 and miR-134-5p. EGFR expression was detected by Western blot analysis and RT-qPCR. Nude mice were used to detect tumor changes. CircZNF609 was upregulated in LSCC and associated with poor survival of LSCC patients. Knockdown of circZNF609 inhibited LSCC proliferation, invasion and the expression of PCNA and matrix matalloproteinases-2 (MMP-2). CircZNF609 can regulate miR-134-5p to upregulate epidermal growth factor receptor (EGFR). In addition, knockdown of EGFR or overexpression of miR-134-5p could reverse the tumor-promoting effects of circZNF609 in LSCC. In LSCC tissues, circZNF609 was negatively correlated with miR-134-5p and positively correlated with EGFR. CircZNF609 promotes the progression of LSCC via the miR-134-5p/EGFR axis, which might be the therapeutic target of LSCC.


Subject(s)
Head and Neck Neoplasms , Laryngeal Neoplasms , Liver Neoplasms , MicroRNAs , Animals , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Liver Neoplasms/genetics , Matrix Metalloproteinase 2/genetics , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , RNA, Circular/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
17.
Bioengineered ; 13(1): 319-330, 2022 01.
Article in English | MEDLINE | ID: mdl-34969354

ABSTRACT

Gestational diabetes mellitus (GDM) is a prevalent and risky pregnant complication which warrants targeted therapy for restriction the inflammation and apoptosis of trophoblast cells. This study sought to analyze the aberrant expression and regulatory mechanism of microRNA (miR)-134-5p in GDM. The miR-134-5p expression in the serum of GDM patients and normal participants was detected via qRT-PCR, followed by receiver operating characteristic (ROC) curve analysis. In vitro GDM cell model was established in the HTR-8/SVneo cells using 25 mmol/L glucose, followed by transfection with miR-134-5p inhibitor and si-Forkhead box p2(FOXP2). The miR-134-5p and FOXP2 expressions, TNF-α, IL-1ß, and IL-10 levels, cell proliferation, migration, and apoptosis were determined by a combination of qRT-PCR, western blot, ELISA, and cell counting Kit-8, Transwell assay, and flow cytometry. The binding relationship between miR-134-5p and FOXP2 was predicted and verified. Our results revealed that miR-134-5p was increased in the serum of GDM patients and could serve as a critical diagnostic marker for GDM. Moreover, miR-134-5p was upregulated in the high glucose (HG)-induced HTR-8/SVneo cells. The miR-134-5p inhibition suppressed the inflammation and apoptosis of HG-induced HTR-8/SVneo cells. miR-134-5p inhibited FOXP2 expression. FOXP2 expression was decreased in GDM. FOXP2 inhibition attenuated the function of miR-134-5p in HG-induced HTR-8/SVneo cells. Overall, miR-134-5p inhibited the FOXP2 expression to facilitate the inflammation and apoptosis of trophoblast cells, thereby exacerbating GDM.


Subject(s)
Diabetes, Gestational/diagnosis , Forkhead Transcription Factors/genetics , Glucose/adverse effects , MicroRNAs/blood , Trophoblasts/cytology , Up-Regulation , Adult , Case-Control Studies , Cell Line , Cell Movement , Cell Proliferation , Diabetes, Gestational/blood , Diabetes, Gestational/genetics , Female , Genetic Markers , Humans , Maternal Age , Models, Biological , Pregnancy , ROC Curve , Trophoblasts/drug effects , Trophoblasts/metabolism
18.
Neurotox Res ; 39(6): 1771-1781, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773593

ABSTRACT

Parkinson's disease (PD) is a multi-factorial neurodegenerative disease. Long noncoding RNAs (lncRNAs) have been revealed to be involved in the process of PD. Herein, this study aimed to investigate the potential function and mechanism of JHDM1D-AS1 (JHDM1D antisense 1) in PD process. 1-Methyl-4-phenylpyridinium (MPP +)-induced SK-N-SH cells were used to conduct expression and function analyses. Levels of genes and proteins were examined using real-time reverse transcription PCR (RT-qPCR) and Western blot. Cell viability and apoptosis were determined using CCK-8 assay, flow cytometry, and Western blot, respectively. ELISA analysis was performed for the detection of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured using commercial kits. The direct interactions between miR-134-5p and PIK3R3 (Phosphoinositide-3-Kinase Regulatory Subunit 3) or JHDM1D-AS1 were verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. JHDM1D-AS1 expression was decreased by MPP + in SK-N-SH cells in a dose- or time-dependent manner. Functionally, JHDM1D-AS1 overexpression attenuated MPP + -evoked neuronal apoptosis, inflammation, and oxidative stress. Mechanistically, JHDM1D-AS1 competitively bound to miR-134-5p to upregulate the expression of its target PIK3R3. Rescue experiments suggested that miR-134-5p upregulation reversed the inhibitory effects of JHDM1D-AS1 on MPP + -induced neuronal injury. Moreover, inhibition of miR-134-5p protected neurons against MPP + -induced neuronal apoptosis, inflammation, and oxidative stress, which were abolished by PIK3R3 silencing. JHDM1D-AS1 protected against MPP + -induced neuron injury via miR-134-5p/PIK3R3 axis, suggesting the potential involvement of this axis in PD process.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/metabolism , MicroRNAs/metabolism , Neurons/drug effects , Parkinson Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Long Noncoding/metabolism , 1-Methyl-4-phenylpyridinium/antagonists & inhibitors , 1-Methyl-4-phenylpyridinium/pharmacology , Blotting, Western , Cell Line, Tumor , Flow Cytometry , Humans , Parkinson Disease/drug therapy , Real-Time Polymerase Chain Reaction
19.
Metab Brain Dis ; 36(8): 2483-2494, 2021 12.
Article in English | MEDLINE | ID: mdl-34661812

ABSTRACT

Long non-coding RNA small nucleolar RNA host gene 7 (SNHG7) was reported to regulate the pathogenesis of ischemic stroke. The study aimed to disclose SNHG7 role in oxygen and glucose deprivation (OGD)-induced Neuro-2a (N2a) cell disorders. An OGD injury cell model was established using N2a cells. The expression of SNHG7, microRNA-134-5p (miR-134-5p) and fibroblast growth factor 9 (FGF9) was determined by quantitative real-time polymerase chain reaction. Protein expression was detected by western blot. Cell viability and Lactate Dehydrogenase (LDH) leakage were determined by cell counting kit-8 and LDH activity detection assays. Oxidative stress was investigated by Superoxide Dismutase and Catalase activity assays as well as Malondialdehyde and Reactive Oxygen Species detection kits. Cell apoptosis and caspase-3 activity were severally demonstrated by flow cytometry and caspase-3 activity assays. The interaction between miR-134-5p and SNHG7 or FGF9 was predicted by online databases, and identified by mechanism assays. OGD treatment decreased SNHG7 and FGF9 expression, but increased miR-134-5p expression. OGD treatment repressed cell viability, promoted LDH leakage and induced oxidative stress and apoptosis in N2a cells, which was rescued by SNHG7 overexpression. SNHG7 acted as a sponge for miR-134-5p, and regulated OGD-triggered cell damage by associating with miR-134-5p. Additionally, miR-134-5p depletion protected N2a cells from OGD-induced injury by targeting FGF9. Ectopic SNHG7 expression protected against OGD-induced neuronal cell injury by inducing FGF9 through sponging miR-134-5p, providing a novel therapeutic target for ischemic stroke.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Fibroblast Growth Factor 9/metabolism , Glucose/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Oxygen/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
20.
Pathol Res Pract ; 227: 153615, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34562827

ABSTRACT

BACKGROUND: CircRNAs are a new subset of noncoding RNAs formed by covalent closed loops and play crucial roles in the regulation of cancer gene expression. However, the roles and underlying mechanisms of circRNAs in gastric cancer (GC) remain indistinct. This study aimed to explore the role and mechanism of hsa_circ_0006421 (circPTK2) in GC. METHODS: The differential expression of circRNAs between GC tissues and adjacent normal tissues were identified by a circRNA expression profiling. Associations of circPTK2 or miR-134-5p expression with clinicopathological characteristics and prognosis of GC patients were analyzed by chi-square of Fisher's exact tests and Kaplan-Meier analysis. CCK8, colony formation, EdU assays and animal models were performed to assess the effects of circPTK2 on proliferation and invasion of GC cells. CircPTK2-specific probes were used to purify the RNA pulled down from the circPTK2, and enrichment of circPTK2 and miR-134-5p was detected by qRT-PCR. The effects of circPTK2 on miR-134-5p expression and CELF2/PTEN signaling were examined by qRT-PCR and Western blotting analysis. RESULTS: Low expression of circPTK2 and high expression of miR-134-5p were related to the poor survival, and high expression of miR-134-5p was related to the tumor recurrence in GC patients. Overexpressing circPTK2 suppressed the proliferation, colony formation, DNA synthesis and cell invasion as well as xenograft tumor growth and lung metastasis in vitro and in vivo, whereas silencing circPTK2 had the opposite effects. Moreover, circPTK2 was negatively correlated and co-localized with miR-134-5p in the cytoplasm of GC tissue cells. circPTK2 bound to and sponged miR-134-5p in GC cells, and miR-134-5p facilitated cell growth and invasion but attenuated circPTK2 induced tumor suppressive effects and CELF2/PTEN signaling activation in GC cells. CONCLUSIONS: circPTK2 functions as a tumor suppressor in GC by sponging miR-134-5p and activating the CELF2/PTEN axis.


Subject(s)
CELF Proteins/metabolism , Lung Neoplasms/enzymology , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , PTEN Phosphohydrolase/metabolism , RNA, Circular/metabolism , Stomach Neoplasms/enzymology , Animals , CELF Proteins/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , PTEN Phosphohydrolase/genetics , RNA, Circular/genetics , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL