Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(13): e33588, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040278

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs of 18-25 bases. miRNAs are also important new biomarkers that can be used for disease diagnosis in the future. Studies have shown that miR-124 levels are significantly elevated during acute myocardial infarction (AMI) and play a key role in the cardiovascular system. A variety of methods have been established to detect myocardial infarction-related miRNAs. However, most require complex miRNA extraction and isolation, and these methods are virtually undetectable when RNA levels are low in the sample. It may lead to biased results. Thus, it is necessary to develop a technique that can detect miRNA without extracting it, which means that intracellular detection is of great significance. Here, we improved the traditional silicon spheres and obtained a biosensor that could effectively capture and detect specific noncoding nucleic acids through the layer-by-layer assembly method. The sensor is protected by hyaluronic acid so it can successfully escape the lysosome into the cell and achieve detection. With the help of a full-featured microplate reader, we determined that the detection limit of the biosensor could reach 1 fM, meeting the needs of intracellular detection. At the same time, we prepared an oxidative stress cardiomyocyte infarction model and successfully captured the overexpressed miR-124 in the infarcted cells to achieve in situ detection. This study could provide a new potential tool to develop miRNAs for sensitive diagnosis in AMI, and the proposed strategy implies its potential for biomedical research.

2.
Microbes Infect ; 26(1-2): 105236, 2024.
Article in English | MEDLINE | ID: mdl-37813158

ABSTRACT

Gastric fibroblasts (GFs) are direct targets of Helicobacter pylori (H. pylori). GFs infected with H. pylori exhibit marked changes in their morphology and biological behavior. However, the molecular mechanisms by which H. pylori regulates GFs remain unknown. In this study, we cocultured GFs with H. pylori for 48 h. As a result, GFs exhibited an elongated and spindle-shaped morphology. Further, cancer-associated fibroblast (CAF) biomarkers were increased, and related behaviors were significantly enhanced in H. pylori-activated GFs. The number of extracellular vesicles (EVs) secreted by H. pylori-activated GFs remarkably increased. The miR-124-3p level was increased in secreted EVs but decreased in the cytoplasm of H. pylori-activated GFs. Overexpression of miRNA-124-3p in the original GFs significantly suppressed their proliferation and migration. In addition, the migration-promoting effects of H. pylori-activated GFs were suppressed by miR-124-3p and GW4869, which blocked EV generation. Finally, pull-down and luciferase assays revealed that SNAI2 is a target of miR-124-3p. The migration-inhibitory effects of GFs treated with miR-124-3p were eliminated by the overexpression of SNAI2, and the upregulation of SNAI2 in H. pylori-activated GFs was partially alleviated by miR-124-3p or GW4869. Overall, H. pylori infection promotes the proliferation and migration of GFs by accelerating the expulsion of EVs carrying miRNA-124-3p, a SNAI2 inhibitor.


Subject(s)
Aniline Compounds , Benzylidene Compounds , Helicobacter pylori , MicroRNAs , Stomach Neoplasms , Humans , Cell Line, Tumor , MicroRNAs/genetics , Cell Proliferation
3.
Oral Dis ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37703315

ABSTRACT

OBJECTIVES: To determine the diagnostic accuracy of the long non-coding RNA "MALAT1" measured in the saliva of patients with oral squamous cell carcinoma (OSCC) and assess the salivary expression of microRNA-124, which MALAT1 targets. SUBJECTS AND METHODS: Forty subjects were collected in a consecutive pattern and allocated into two groups. Group A included 20 patients with OSCC, while Group B included 20 healthy subjects. Salivary expression of MALAT1 and microRNA (miRNA)-124 was evaluated in the two study groups using quantitative real-time polymerase chain reaction and correlated with histopathological examination of OSCC subjects. RESULTS: OSCC yielded a statistically significant higher expression of MALAT1 than healthy controls and a lower expression of miRNA-124 in OSCC than controls. There is a statistically significant inverse relationship between salivary MALAT1 and miRNA-124. Moreover, there is a statistically significant difference in the MALAT1 expression in saliva samples from metastatic cases compared with non-metastatic cases, as well as in patients with lymph node involvement compared with those without involvement. At a cut-off value of 2.24, salivary MALAT1 exhibited 95% sensitivity and 90% specificity in differentiating OSCC from healthy subjects. CONCLUSION: Salivary MALAT1 acts as a sponge for miRNA-124 and could be a potential salivary biomarker for OSCC.

4.
Brain Sci ; 13(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190604

ABSTRACT

Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.

5.
Int J Nanomedicine ; 18: 781-795, 2023.
Article in English | MEDLINE | ID: mdl-36814857

ABSTRACT

Objective: Emerging studies have explained the crucial role of non-coding RNA (lncRNA) in various pathological progressions. The study was designed to examine the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miRNA-124 in the differentiation of osteoclasts, to provide new clues or evidences for the pathogenesis of periodontitis. Methods: We constructed an osteoblast-osteoclast Transwell co-culture system and osteoblast-derived exosomes (OB-exo) intervention model. We assessed the osteoclastogenesis as well as the level of lncRNA-MALAT1 and miRNA-124. The mechanism for lncRNA MALAT1 targeting miR-124 modulating the differentiation of osteoclasts was investigated by cell transfection, quantitative real-time reverse transcription PCR (RT-qPCR), Western blot, and Dual-Luciferase reporter assays. Results: Osteoblast-derived exosomes were isolated and identified. Co-culture and OB-exo intervention can promote osteoclastogenesis, also significantly up-regulate the expression of MALAT1, while the level of miR-124 is the opposite. Transfection of cells with small interfering RNA (si-MALAT1) and miR-124 mimic decreased the formation of TRAP+ osteoclasts and inhibited the expression of NFATc1. However, the effect was reversed when transfected with miR-124 inhibitor and si-MALAT1. The Dual-Luciferase reporter assay confirmed the binding sites between MALAT1 and miR-124, and miR-124 and NFATc1. Conclusion: LncRNA MALAT1 functioned as an endogenous sponge by competing for miR-124 binding to regulate NFATc1 expression, accelerating the progression of osteoclastogenesis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Osteogenesis/physiology , MicroRNAs/genetics , Osteoblasts/metabolism , Macrophages/metabolism , Transcription Factors/metabolism
6.
Hippocampus ; 33(2): 96-111, 2023 02.
Article in English | MEDLINE | ID: mdl-36541921

ABSTRACT

MiRNA-124 has been considered to play a significant role in the formation of memory and a variety of neurodegenerative diseases. In this study, the aim is to verify whether miRNA-124 is involved in memory impairment induced by d-galactose, and explore the underlying neuroprotective mechanism. The results revealed that rapid administration of d-galactose (1000 mg/kg subcutaneously) in mice caused memory impairments, as determined by Novel Object Recognition test, Morris Water Maze test, and histological assessments. MiRNA-124 agomir is stereotactic injected into hippocampus, thus alleviated memory impairment induced by d-galactose and reversed the neural damage and neuroinflammation. Furthermore, the results of molecular biological analysis and immunohistochemistry revealed that miRNA-124 markedly reduced neuroinflammation induced by d-galactose through polarization of microglia as determined by detection of ionized calcium binding adapter molecule 1 (Iba-1), inducible nitric oxide synthase (iNOS) and arginase-1(Arg-1), which also downregulated inflammatory mediators, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), and upregulated IL-4 and IL-10. Hence, taken together, the results of the present study suggested that miRNA-124 showed a significant negative correlation with memory impairment and neuroinflammation induced by d-galactose rapidly, possibly via polarization of microglia from M1 to M2. It is possible that miRNA-124 can be used as a new target for the pathogenesis of memory impairment, including age-associated neurodegenerative diseases such as Alzheimer's disease.


Subject(s)
Galactose , MicroRNAs , Rats , Mice , Animals , Male , Galactose/toxicity , Galactose/metabolism , MicroRNAs/metabolism , Neuroinflammatory Diseases , Microglia/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism
7.
Diagnostics (Basel) ; 12(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35328182

ABSTRACT

Non-Hodgkin's lymphomas (NHLs) are a heterogeneous group of malignant lymphomas that can occur in both lymph nodes and extranodal sites. Bone marrow (BM) is the most common site of extranodal involvement in NHL. The objective of this study is to determine the unique profile of miRNA expression in BM affected by NHL, with the possibility of a differential diagnosis of NHL from reactive BM changes and acute leukemia (AL). A total of 180 cytological samples were obtained by sternal puncture and aspiration biopsy of BM from the posterior iliac spine. All the cases were patients before treatment initiation. The study groups were NHL cases (n = 59) and AL cases (acute lymphoblastic leukemia (n = 25) and acute myeloid leukemia (n = 49)); the control group consisted of patients with non-cancerous blood diseases (NCBDs) (n = 48). We demonstrated that expression levels of miRNA-124, miRNA-221, and miRNA-15a are statistically significantly downregulated, while the expression level of let-7a is statistically significantly upregulated more than 2-fold in BM in NHL compared to those in AL and NCBD. ROC analysis revealed that let-7a/miRNA-124 is a highly sensitive and specific biomarker for a differential diagnosis of BM changes in NHL from those in AL and NCBD. Therefore, we conclude that analysis of miRNA expression levels may be a promising tool for early diagnosis of NHL.

8.
Am J Transl Res ; 14(1): 285-294, 2022.
Article in English | MEDLINE | ID: mdl-35173845

ABSTRACT

OBJECTIVE: To explore the correlation of serum levels of microRNA (miRNA)-124 and miRNA-210 with brain injury and inflammatory response (IR) in patients with craniocerebral injury (CI) at early stage. MATERIAL AND METHODS: Clinical data of 105 patients with CI (case group) admitted to our hospital from January 2018 to January 2020 were retrospectively analyzed. The other 60 non-CI healthy patients underwent physical examination were selected as the healthy group. The serum levels of miRNA-124 and miRNA-210 were detected by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). RESULTS: The levels of serum miRNA-124 and miRNA-210 as well as the inflammatory molecules Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), MEK, and extracellular signal-regulated kinases 1/2 (ERK1/2) in the peripheral blood of the case group were higher than those in the healthy group (P<0.05). Additionally, the serum levels of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), S100B, Tau, macrophage inflammatory protein-1α (MIP-1α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the case group were higher than those in the healthy group (P<0.05). The levels of miRNA-124 and miRNA-210 were positively correlated with the serum levels of UCH-L1, GFAP, S100B, Tau, MIP-1α, IL-1ß, IL-6, and TNF-α (P<0.05) as well as with the levels of JAK2, STAT3, MEK, and ERK1/2 in the peripheral blood (P<0.05). CONCLUSION: The elevated levels of serum miRNA-124 and miRNA-210 in patients with CI are closely related to the aggravation of brain injury, overactivation of the IR, and prognosis.

9.
Lasers Med Sci ; 37(2): 849-856, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33884524

ABSTRACT

Osteoporosis (OP) is a multifactorial bone disease that occurs worldwide. The treatment of OP is still unsatisfactory. Bone mesenchymal stem cell (BMSC) differentiation is a key process in OP pathogenesis. Low-level laser irradiation (LLLI) has been reported to regulate BMSC proliferation, but the role of circRNAs in the LLLI-based promotion of BMSC proliferation remains unclear. CircRNAs are essential molecular regulators that participate in numerous biological processes and have therapeutic potential. miR-124-3p is an essential microRNA (miRNA), and its expression changes are related to BMSC proliferation ability. In the present study, gain-loss function of experiments demonstrated that circRNA_0001052 could regulate the proliferation of BMSCs by acting as a miR-124-3p sponge through the Wnt4/ß-catenin pathway. The results of this study strongly suggest that circRNA_0001052 plays an essential role in BMSC proliferation in response to LLLI treatment, which is a potential therapeutic manipulation with clinical applications.


Subject(s)
Biological Phenomena , Mesenchymal Stem Cells , MicroRNAs , Cell Proliferation/genetics , Mesenchymal Stem Cells/radiation effects , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , RNA, Circular/genetics
10.
Transl Androl Urol ; 10(9): 3669-3683, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733662

ABSTRACT

BACKGROUND: Currently, drug-resistance is a major challenge in the treatment of renal cancer. Although microRNAs (miRNAs) have been reported to contribute to the incidence of drug resistance in renal cancer, the bio-functional roles and underlying regulatory mechanisms of novel miRNAs in cisplatin resistance remain largely unclear. METHODS: In this study, miRNA microarray analysis was applied to evaluate miRNA changes induced by cisplatin on RCC (renal cell carcinoma) cell lines. Then, Caki-1 and 786-0 cells were transfected with miR (miRNA)-124 mimics to observe cisplatin resistance in RCC cell lines after up-regulation of miR-124. TargetScan was used to identify putative protein-coding gene targets of miR-124. Further, the interaction between calpain small subunit 1 (Capn4) and CCR4-NOT transcription complex subunit 3 (CNOT3) was detected by quantitative real-time PCR (qPCR) and western blotting, and confirmed by co-immunoprecipitation. The effect of Capn4 and/or CNOT3 on cell viability and half maximal inhibitory concentration (IC50) value of miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated using the Cell Counting Kit-8 (CCK-8) assay. And the effect of Capn4 and/or CNOT3 on the level of necroptosis in miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated by flow cytometric analysis. Then, four groups of 786-0 cells (miR-124, miR-124+ Capn4, miR-124+ CNOT3, miR-124+ Capn4+ CNOT3) were inoculated into nude mice to observe the effect of cisplatin on tumor formation. RESULTS: miR-124 was found to be markedly elevated in renal cancer cells by cisplatin. Functionally, the overexpression of miR-124 reduced the sensitivity of renal cancer cells to cisplatin and CAPN4 was found to be a direct target of miR-124, which can negatively regulated CAPN4 expression. Moreover, ectopic expression of CAPN4 reversed the impairment of miR-124 on cisplatin-sensitivity and cisplatin-induced necroptosis. Mechanically, the present study revealed that CAPN4 could directly interact with CNOT3 and promote its degradation, and that the cisplatin-resistant phenotype was reversed by up-regulation of CNOT3. CONCLUSIONS: Therefore, miR-124 is an important inhibitor in cisplatin-induced necroptosis, and the miR-124-CAPN4-CNOT3 signaling axis plays a critical role in the emergence of cisplatin-resistance.

11.
J Cell Physiol ; 236(10): 7071-7087, 2021 10.
Article in English | MEDLINE | ID: mdl-33821473

ABSTRACT

Programmed death ligand 1 (PD-L1) plays a significant role in colorectal tumorigenesis through induction of regulatory T cells (Tregs) and suppression of antitumor immunity. Furthermore, microRNAs (miRNAs) as the posttranscriptional regulators of gene expression show considerable promise as a therapeutic target for colorectal cancer (CRC) treatment. Considering this, in vitro effects of miRNA-124 (miR-124-3p) on CRC cell tumorigenesis and Tregs differentiation via targeting PD-L1 were investigated in the current study. Functional analysis showed that miR-124 is significantly downregulated in CRC tissues as compared with marginal normal samples (p < .0001), and its downregulation was negatively correlated with PD-L1 expression. Moreover, a specific region in PD-L1 3'-untranslated region was predicted as the miR-124 target and validated using the luciferase assay. Further investigation showed that transfection of HT29 and SW480 cells with miR-124 mimics significantly reduced PD-L1 mRNA, protein, and cell surface expression, and inhibited Tregs in coculture models via modulating interleukin [IL]-10, IL-2, tumor necrosis factor α, transforming growth factor beta, and interferon gamma expression levels. Besides, miR-124 overexpression decreased CRC cell proliferation and arrested cell cycle at the G1 phase through downregulation of c-Myc and induced apoptosis in CRC cells via upregulation of both intrinsic and extrinsic pathways. Also, miR-124 exogenous overexpression could reduce colony and spheroid formation ability of CRC cells via downregulating CD44 mRNA expression. miR-124 also diminished MMP-9 expression and subsequently suppressed cell migration and invasion. We also illustrated that STAT3 signaling was repressed by miR-124 in CRC cells. Taken together, our findings imply that considering the involvement of miR-124 in the regulation of PD-L1 through colorectal tumorigenesis and its remarkable antitumor effects, this miRNA could be regarded as the promising target for the development of therapeutic approaches for colorectal cancer.


Subject(s)
B7-H1 Antigen/metabolism , Colorectal Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocytes, Regulatory/metabolism , Apoptosis , B7-H1 Antigen/genetics , Cell Movement , Cell Proliferation , Coculture Techniques , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Cytokines/genetics , Cytokines/metabolism , G1 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , MicroRNAs/genetics , Neoplasm Invasiveness , STAT3 Transcription Factor/genetics , Signal Transduction , T-Lymphocytes, Regulatory/enzymology
12.
J Cardiovasc Transl Res ; 14(6): 1165-1172, 2021 12.
Article in English | MEDLINE | ID: mdl-33900534

ABSTRACT

Brain injury is a major source of patient morbidity after cardiac surgery in children. New early accurate biomarkers are needed for the diagnosis of patients at risk for cerebral postoperative damage. Specific circulating miRNAs have been found as suitable biomarkers for many diseases. We tested whether miRNA-124a reflects neurological injury in pediatric patients following heart surgery. Serum samples were obtained from 34 patients before and six hours after heart surgery. MiRNAs-124a was quantified by RQ-PCR. MiRNA-124a levels six hours after heart surgery correlated with the neurological outcome of the patients. In children with neurological deficits, miRNA-124a levels increased while in those with no neurological deficits the levels decreased. MiRNA-124a was able, at six hours after the operation, to identify patients who are at risk for the appearance of neurological deficits. Circulating miRNA-124a is a potential biomarker for the appearance of neurological deficits in pediatric patients following heart surgery. Graphical Abstract.


Subject(s)
Biomarkers/blood , Brain Diseases/blood , Cardiac Surgical Procedures , Circulating MicroRNA/blood , Postoperative Complications/blood , Brain Diseases/etiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Postoperative Complications/etiology
13.
Genes Genomics ; 43(6): 623-631, 2021 06.
Article in English | MEDLINE | ID: mdl-33779948

ABSTRACT

BACKGROUND: The activation of macrophages and the release of inflammatory cytokines are the main reasons for the progress of systemic lupus erythematosus (SLE). MicroRNA (miRNA)-124 is involved in the regulation of macrophages and is a key regulator of inflammation and immunity. OBJECTIVE: To explore whether paeoniflorin (PF) regulates the biological functions of macrophages depends on miR-124. METHODS: RT-PCR, WB, ELISA, CCK-8 and flow cytometry were used to evaluate that PF regulated the biological functions of THP-1 cells through miR-124. RESULTS: PF significantly inhibited the proliferation while promotes the apoptosis of THP-1 cells, and inhibited the release of IL-6, TNF-α and IL-1ßin THP-1 cells. RT-PCR results shown that PF up-regulated the expression of miR-124 in THP-1 cells. Functional recovery experiments showed that compared with the LPS + mimic-NC group, LPS + miR-124 mimic significantly inhibited the proliferation and the release of IL-6, TNF-α and IL-1ß, but promoted the apoptosis of THP-1 cells. In addition, compared with the LPS + PF + inhibitor-NC group, LPS + PF + miR-124 inhibitor significantly promoted the proliferation and the release of IL-6, TNF-α and IL-1ß, but inhibited the apoptosis of THP-1 cells. CONCLUSIONS: By down-regulating miR-124, PF inhibits the proliferation and inflammation of THP-1 cells, and promotes the apoptosis of THP-1 cells.


Subject(s)
Glucosides/pharmacology , Inflammation/drug therapy , Lupus Erythematosus, Systemic/drug therapy , MicroRNAs/genetics , Monoterpenes/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inflammation/genetics , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-6/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Macrophages/drug effects , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/genetics
14.
Exp Biol Med (Maywood) ; 246(2): 240-248, 2021 01.
Article in English | MEDLINE | ID: mdl-33070653

ABSTRACT

Degeneration of photoreceptors is a major cause of blindness. Identifying new methods for the generation of photoreceptors offers valuable options for a cell replacement therapy of blindness. Here, we show that primary adult human retinal pigmented epithelium (hRPE) cells were directly converted to postmitotic neurons with various properties of photoreceptors by the neurogenic transcription factor ASCL1 and microRNA124. At Day 8 after the induction of ASCL1 and miRNA124 expression in hRPE cells, 91% of all cells were Tuj1+, and 83% of all cells were MAP2+ neurons. The cone photoreceptor marker L/M-opsin, the rod photoreceptor marker rhodopsin, and the generic photoreceptor marker recoverin were expressed in 76%, 86%, and 92% of all cells, respectively. Real-time quantitative PCR measurements showed significant and continuous increases in the expression of photoreceptor markers phosducin and recoverin, rod cell markers phosphodiesterases 6 b and arrestin S-antigen, and cone cell markers L/M-opsin and S-opsin in three independent lines of primary hRPE cells at different days of transdifferentiation. Transmission electron microscopy of converted neurons showed disc-like structures similar to those found in photoreceptors. While the converted neurons had voltage-dependent Na+, K+, and Ca2+ currents, light-induced change in membrane potential was not detected. The study demonstrates the feasibility of rapid and efficient transdifferentiation of adult hPRE cells to neurons with many properties of photoreceptors. It opens up a new possibility in cell replacement therapy of blindness caused by photoreceptor degeneration.


Subject(s)
Cell Differentiation , Epithelial Cells/cytology , Neurons/cytology , Photoreceptor Cells, Vertebrate/cytology , Retinal Pigment Epithelium/cytology , Adult , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cellular Reprogramming/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Mitosis , Retinal Pigment Epithelium/ultrastructure , Time Factors
15.
J Comp Neurol ; 529(7): 1456-1464, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32918278

ABSTRACT

Recent studies have shown that circular RNAs (circRNAs) are involved in many human diseases, but their roles in secondary damage after spinal cord injury (SCI) remain unclear. In the current study circRNA sequencing was performed in the damaged tissues of SCI rats on the seventh day after injury, and related molecular mechanisms were investigated. Quantitative PCR validations of molecules that exhibited significantly altered expression in SCI mice were performed. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to assess differentially expressed circRNAs. A novel circRNA-2960 was the most significantly upregulated in the SCI group. It could downregulate its target molecule miRNA-124, then exacerbate the inflammatory response and induce apoptosis at the lesion site. Disrupting circRNA-2960 expression promoted recovery of tissues affected by secondary SCI damage. The results of the present study may provide new insight into the mechanisms of secondary injury in SCI, and a new molecular marker for the diagnosis and treatment of SCI.


Subject(s)
Gene Expression Regulation/genetics , MicroRNAs/genetics , RNA, Circular/genetics , Spinal Cord Injuries/pathology , Animals , Rats , Rats, Wistar , Spinal Cord Injuries/genetics
16.
Biosci Rep ; 40(10)2020 10 30.
Article in English | MEDLINE | ID: mdl-33026076

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be a useful source of cells for the treatment of many diseases, including neurologic diseases. The curative effect of MSCs relies mostly on cell's capacity of migration, proliferation and differentiation. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles on regulating various cell behaviors. Here, we report that miRNA-124 (miR124) and miRNA-21-5p (miR21-5p) display different regulatory roles on migration, proliferation and neuron differentiation of MSCs. MiR124 was shown greatly promoting MSCs migration and neuronal differentiation. MiR21-5p could significantly enhance the proliferation and neuronal differentiation ability of MSCs. MiR124 and miR21-5p synergistically promote differentiation of MSCs into neurons. Collectively, miR124 and miR21-5p can functionally regulate cell migration, proliferation and neuronal differentiation of MSCs. Therefore, miR124 and miR21-5p may be promising tools to improve transplantation efficiency for neural injury.


Subject(s)
Cell Movement , Cell Proliferation , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Animals , Cells, Cultured , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Rats, Sprague-Dawley , Signal Transduction
17.
Drug Deliv ; 27(1): 410-421, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32133894

ABSTRACT

Co-delivery nanoparticles with characteristics of intracellular precision release drug have been generally accepted as an effective therapeutic strategy for eye diseases. In this study, we designed a new co-delivery system (miRNA/NP-BRZ) as a lasting therapeutic approach to prevent the neuro-destructive after the long-term treatment of glaucoma. Neuroprotective and intraocular pressure (IOP) response were assessed in in vivo and in vitro models of glaucoma. At the meaning time, we describe the preparation of miRNA/NP-BRZ, drug release characteristics, intraocular tracing, pharmacokinetic and pharmacodynamics study and toxicity test. We found that miRNA/NP-BRZ could remarkably decrease IOP and significantly prevent retinal ganglion cell (RGC) damages. The new formula of miRNA-124 encapsulated in PEG-PSA-BRZ nanoparticles exhibits high encapsulation efficiency (EE), drug-loading capacity (DC), and stable controlled-release efficacy (EC). Moreover, we also verified that the miRNA/NP-BRZ system is significantly neuroprotective and nontoxic as well as lowering IOP. This study shows our co-delivery drug system would have a wide potential on social and economic benefits for glaucoma.


Subject(s)
Drug Delivery Systems , Glaucoma/therapy , MicroRNAs/administration & dosage , Sulfonamides/administration & dosage , Thiazines/administration & dosage , Animals , Carbonic Anhydrase Inhibitors/administration & dosage , Carbonic Anhydrase Inhibitors/pharmacokinetics , Carbonic Anhydrase Inhibitors/pharmacology , Decanoic Acids/chemistry , Delayed-Action Preparations , Dicarboxylic Acids/chemistry , Drug Liberation , Gene Transfer Techniques , Glaucoma/physiopathology , Intraocular Pressure/drug effects , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Nanoparticles , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Polyethylene Glycols/chemistry , Rabbits , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Thiazines/pharmacokinetics , Thiazines/pharmacology
18.
BMC Musculoskelet Disord ; 21(1): 150, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143603

ABSTRACT

BACKGROUND: Rheumatoid arthritis is a long-term, progressive autoimmune disease. It is characterized by synovial hyperplasia leading to swelling, stiffness, and joint deformity in more than one joint. Fibroblast-like synoviocytes are the major cell types that make up the synovial intima structure, which is one of the decisive factors in the development and course of rheumatoid arthritis. METHODS: The potential therapeutic effects of MSCs-derived miRNA-124a overexpression exosomes were evaluated in vitro by the method including MTT assay and cell cycle test for cell proliferation, scratch wound closure and transwell for cell migration, flow cytometry and western for the apoptosis detection. RESULTS: Exosomes derived from human MSCs that overexpression miRNA-124a were prepared and characterized. We found that the pretreatment of this exosome was able to inhibit the proliferation and migration of fibroblast-like synoviocyte cell line and promote the apoptosis of this cell during the co-incubation. CONCLUSIONS: Exosomes derived from MSCs were proved to be a suitable vector for the delivery of therapeutic miRNA-124a, and such miRNA-124a overexpression exosomes were expected to provide a new medicine and strategy for the treatment of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Exosomes/metabolism , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Synoviocytes/metabolism , Apoptosis/genetics , Arthritis, Rheumatoid/pathology , Cell Cycle Checkpoints/genetics , Cell Line , Coculture Techniques , Humans , MicroRNAs/genetics , Transfection
19.
ACS Nano ; 14(2): 1482-1491, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31927975

ABSTRACT

Two different drug micro-carriers consisting of doxorubicin-dextran (DOX-D)- and camptothecin-modified carboxymethyl cellulose (CPT-CMC)-loaded nucleic acid-stabilized microcapsules, MC-1 and MC-2, or two different nanocarriers consisting of nucleic-acid-locked doxorubicin (DOX)- and camptothecin (CPT)-loaded metal-organic framework nanoparticles, NMOF-1 and NMOF-2, are coupled to auxiliary constitutional dynamic networks, CDNs, for the triggered release of the drugs. CDN "S" composed of four constituents AA'', AB', BA', and BB', and two hairpin structures, H1 and H2, leads to the CDN "S"-guided unlocking of the MC-1/MC-2 carriers and the release of DOX-D and CPT-CMC or of the NMOF-1 and NMOF-2 carriers that release DOX and CPT, respectively. The unlocking processes are activated by the cleavage of H1 and H2 by BB' and BA', respectively, to yield fragmented strands that unlock the gating units of the microcapsules/NMOFs carriers. In the presence of miRNA-155 or miRNA-124, dictated orthogonal reconfiguration of CDN "S" into CDN "X" or "Y" proceeds. The miRNA-155 stimulates the reconfiguration of CDN "S" to CDN "X", where AA' and BB' are upregulated, and AB' and BA' are downregulated, leading to the enhanced release of DOX-D or DOX from the microcapsule/NMOFs carriers, and to the concomitant inhibition of the release of CPT-CMC or CPT from the respective carriers. Similarly, the miRNA-124-triggered reconfiguration of CDN "S" to CDN "Y" results in the BA'-guided cleavage of H2 and the preferred release of CPT-CMC or CPT from the respective carriers. The miRNA-triggered CDN-driven unlocking of the carriers stimulates the amplified and selective release of the drugs from the microcapsules/NMOFs carriers.

20.
Pathol Oncol Res ; 26(2): 947-954, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30915607

ABSTRACT

Malignant glioma is the most common primary malignancy in the brain. It is aggressive, highly invasive, and destructive. Studies have shown that sevoflurane can affect the invasion and migration of a variety of malignant tumors. However, its effects on human glioma cells and related mechanisms are not clear. Cultured U251 and U87 cells were pretreated with sevoflurane. The effect of sevoflurane on cell proliferation, migration, apoptosis and invasion ability were evaluated by MTT, wound healing assay, cell apoptosis and transwell assays, respectively. miRNA-124-3p and ROCK1 signaling pathway genes expression in sevoflurane treated cell lines was measured by quantitative real-time PCR (qRT-PCR) and western blotting analysis. The potential target genes of miRNA were predicted by online software. Luciferase reporter assay was employed to validate the direct targeting of ROCK1 by miRNA-124-3p. In present studies, sevoflurane inhibits glioma cells proliferation, invasion and migration. Additionally, inversely correlation between miR-124-3p and ROCK1 expression in sevoflurane treated glioma cells was observed. Furthermore, sevoflurane inhibits glioma cells proliferation, migration and invasion through miR-124-3p/ROCK1 axis. Taken together, our study revealed that sevoflurane can inhibit glioma cell proliferation, invasion and migration. Its mechanism may be related to the upregulation of miR-124-3p, which suppresses ROCK1 signaling pathway. The results of the study will help to understand the pharmacological effects of inhaled general anesthetics more comprehensively and help to provide an experimental basis for selecting more reasonable anesthetics for cancer patients.


Subject(s)
Anesthetics, Inhalation/pharmacology , Glioma/pathology , MicroRNAs/drug effects , Sevoflurane/pharmacology , rho-Associated Kinases/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , MicroRNAs/metabolism , Signal Transduction/drug effects , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL