Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Comput Biol Med ; 182: 109091, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241324

ABSTRACT

Diazinon (DZN), a persistent organophosphate insecticide, has been associated with neurotoxic effects, particularly in the hippocampus. However, the specific molecular mechanisms of DZN-induced hippocampal toxicity remain unknown. In this study, we analyzed the mRNA and miRNA expression patterns of HT22 cells following exposure to DZN (125 µM), and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted subsequently. The integration of miRNA sequencing (miRNA-seq) and mRNA sequencing (mRNA-seq) data identified 33 differentially expressed miRNAs (DEMIs, 15 up-regulated and 18 down-regulated) and 271 differentially expressed mRNAs (DEMs, 69 up-regulated and 202 down-regulated) targeted by the DEMIs. Moreover, the 3 most central mRNAs (ITGAV, FN1, and EGFR) and 7 associated miRNAs (mmu-miR-700-5p, mmu-miR-26a-2-3p, mmu-miR-452-3p, mmu-miR-25-3p, mmu-miR-582-5p, mmu-miR-467a-5p, and mmu-miR-467b-5p) were screened and validated using quantitative real-time PCR. Furthermore, the GO analysis revealed that the identified DEMs were enriched in biological adhesion extracellular matrix, and growth factor binding, while the KEGG analysis suggested that the enriched DEMs were involved in ECM-receptor interaction, mTOR signaling pathway, MAPK signaling pathway, and AMPK signaling pathway. Our results may aid in elucidating the underlying mechanisms associated with DZN-induced hippocampal toxicity and provide valuable insights into the pathogenesis of neurotoxicity triggered by other organophosphorus pesticides.

2.
Biology (Basel) ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056686

ABSTRACT

With the advent of next-generation sequencing (NGS), experimental techniques that capture the biological significance of DNA loci or RNA molecules have emerged as fundamental tools for studying the epigenome and transcriptional regulation on a genome-wide scale. The volume of the generated data and the underlying complexity regarding their analysis highlight the need for robust and easy-to-use computational analytic methods that can streamline the process and provide valuable biological insights. Our solution, aPEAch, is an automated pipeline that facilitates the end-to-end analysis of both DNA- and RNA-sequencing assays, including small RNA sequencing, from assessing the quality of the input sample files to answering meaningful biological questions by exploiting the rich information embedded in biological data. Our method is implemented in Python, based on a modular approach that enables users to choose the path and extent of the analysis and the representations of the results. The pipeline can process samples with single or multiple replicates in batches, allowing the ease of use and reproducibility of the analysis across all samples. aPEAch provides a variety of sample metrics such as quality control reports, fragment size distribution plots, and all intermediate output files, enabling the pipeline to be re-executed with different parameters or algorithms, along with the publication-ready visualization of the results. Furthermore, aPEAch seamlessly incorporates advanced unsupervised learning analyses by automating clustering optimization and visualization, thus providing invaluable insight into the underlying biological mechanisms.

3.
bioRxiv ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39071300

ABSTRACT

MicroRNA-seq data is produced by aligning small RNA sequencing reads of different miRNA transcript isoforms, called isomiRs, to known microRNAs. Aggregation to microRNA-level counts discards information and violates core assumptions of differential expression (DE) methods developed for mRNA-seq data. We establish miRglmm, a DE method for microRNA-seq data, that uses a generalized linear mixed model of isomiR-level counts, facilitating detection of miRNA with differential expression or differential isomiR usage. We demonstrate that miRglmm outperforms current DE methods in estimating DE for miRNA, whether or not there is significant isomiR variability, and simultaneously provides estimates of isomiR-level DE.

4.
Plants (Basel) ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931120

ABSTRACT

Anthocyanins and proanthocyanidins are considered to be essential secondary metabolites in grapes and are used to regulate metabolic processes, while miRNAs are involved in their synthesis of anthocyanins and proanthocyanidins to regulate metabolic processes. The present research work was carried out to investigate the underlying regulatory mechanism of target genes in the grape cultivars 'Italia' and 'Benitaka'. miRNA and transnscriptomic sequencing technology were employed to characterize both the profiles of miRNAs and the transcripts of grape peels at 10 and 11 weeks post flowering (10 wpf and 11 wpf). The results revealed that the expression level of vvi-miR828a in 'Italia' at 10 and 11 wpf was significantly higher than that in 'Benitaka'. miRNA-seq analysis predicted MYBPA1 to be the target gene of vvi-miR828a. In transcriptome analysis, the expression level of the VvMYBPA1 gene in 'Benitaka' was significantly higher than that in 'Italia'; in addition, the TPM values (expression levels) of VvMYBPA1 and miR828a also showed an evident negative correlation. The determination of the proanthocyanidin (PA) content in 'Italia' and 'Benitaka' peels at 11 wpf demonstrated that the PA content of 'Benitaka' was significantly higher than that of 'Italia'. The outcomes of RT-qRCR analysis exhibited that the expression levels of the VdPAL, VdCHS, VdCHI, VdDFR, VdMYB5b, VdANR, and VdMYBPA1 genes related anthocyanin and proanthocyanidin pathways were reduced, while the expression levels of all of the above genes were increased after the transient expression of the VvMYBPA1 vector into grape leaves. The results of the transient overexpression experiment of vvi-miR828a before the veraison period of strawberry fruits showed that vvi-miR828a can significantly slow down the coloration of strawberries. The vvi-miR828a negatively regulates the accumulation of proanthocyanidins in grape fruits by inhibiting the expression of VvMYBPA1.

5.
Transl Androl Urol ; 13(5): 812-827, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38855608

ABSTRACT

Background: Solasonine has been demonstrated to exert an inhibitory effect on bladder cancer (BC), but the potential mechanisms remain unclear. Therefore, the aim of this study is to explore the association between microRNAs (miRNAs)-mediated regulation and the anti-tumor activities of solasonine in BC. Methods: MiRNA sequencing was performed to identify the differentially expressed microRNAs (DE-miRNAs) associated with solasonine in BC cells. Functional enrichment analyses of the DE-miRNAs activated and inhibited by solasonine were then conducted. The DE-miRNAs with prognostic value for BC and those differentially expressed in the BC samples were subsequently identified as the hub DE-miRNAs. After identifying the messenger RNAs (mRNAs) that were targeted by the hub DE-miRNAs and those differentially expressed in the BC samples, a protein-protein interaction analysis was performed to identify the core downstream genes, which were then used to construct a solasonine-miRNA-mRNA regulatory network. Results: A total of 27 activated and 19 inhibited solasonine-mediated DE-miRNAs were identified that were found to be associated with several tumor-related biological functions and pathways. After integrating the results of the survival analysis and expression assessment, the following nine hub DE-miRNAs were identified: hsa-miR-127-3p, hsa-miR-450b-5p, hsa-miR-99a-5p, hsa-miR-197-3p, hsa-miR-423-3p, hsa-miR-4326, hsa-miR-625-3p, hsa-miR-625-5p, and hsa-miR-92a-3p. The DE-mRNAs targeted by the hub DE-miRNAs were predicted, and 30 core downstream genes were used to construct the solasonine-miRNA-mRNA regulatory network. miR-450b-5p was shown to be associated with the most mRNAs in this network, which suggests that it plays a crucial role in the solasonine-mediated anti-BC effect. Conclusions: A regulatory network, including solasonine, miRNAs, and mRNAs related to BC, was constructed. This network provides extensive insights into the molecular regulatory mechanisms that underlie the anti-cancer efficacy of solasonine in BC.

6.
Stat Appl Genet Mol Biol ; 23(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38810893

ABSTRACT

This article addresses the limitations of existing statistical models in analyzing and interpreting highly skewed miRNA-seq raw read count data that can range from zero to millions. A heavy-tailed model using discrete stable distributions is proposed as a novel approach to better capture the heterogeneity and extreme values commonly observed in miRNA-seq data. Additionally, the parameters of the discrete stable distribution are proposed as an alternative target for differential expression analysis. An R package for computing and estimating the discrete stable distribution is provided. The proposed model is applied to miRNA-seq raw counts from the Norwegian Women and Cancer Study (NOWAC) and the Cancer Genome Atlas (TCGA) databases. The goodness-of-fit is compared with the popular Poisson and negative binomial distributions, and the discrete stable distributions are found to give a better fit for both datasets. In conclusion, the use of discrete stable distributions is shown to potentially lead to more accurate modeling of the underlying biological processes.


Subject(s)
MicroRNAs , Models, Statistical , MicroRNAs/genetics , Humans , Female , High-Throughput Nucleotide Sequencing/methods , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Neoplasms/genetics , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data , Software
7.
Gene ; 924: 148555, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38772515

ABSTRACT

The Hong Kong oyster, Crassostrea hongkongensis, is a significant bivalve species with economic importance. It primarily inhabits the estuarine intertidal zones in southern China, making it susceptible to salinity fluctuations. Consequently, investigating the molecular mechanisms governing salinity regulation in C. hongkongensis is essential. In this study, we conducted miRNA-seq on C. hongkongensis to compare miRNA expression differences under varying salinities (5‰, 25‰, and 35‰). The miRNA sequencing revealed 51 known miRNAs and 95 novel miRNAs across nine small RNA libraries (S5, S25, and S35). Among these miRNAs, we identified 6 down-regulated differentially expressed (DE) miRNAs in response to hypo-salinity stress (5‰), while 1 up-regulated DE miRNA and 5 down-regulated DE miRNAs were associated with hyper-salinity stress (35‰). Additionally, we predicted 931 and 768 potential target genes for hypo- and hyper-salinity stress, respectively. Functional gene annotation indicated that the target genes under hypo-salinity stress were linked to vesicle-mediated transport and metal ion binding. Conversely, those under hyper-salinity stress were primarily involved in signal transduction and metabolic processes. These findings have provided insights into the regulatory role of miRNAs, their potential target genes and associated pathways in oyster hypo- and hyper-salinity stress, which establish a foundation for future studies on the roles of miRNAs in salinity acclimation mechanisms in C. hongkongensis.


Subject(s)
Crassostrea , MicroRNAs , Salinity , Animals , Crassostrea/genetics , MicroRNAs/genetics , Acclimatization/genetics , Salt Stress/genetics , Molecular Sequence Annotation , Gene Expression Profiling/methods , RNA-Seq/methods
8.
Nutrients ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474819

ABSTRACT

Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.


Subject(s)
MicroRNAs , Renal Insufficiency, Chronic , Mice , Animals , Diet, High-Fat , Mice, Inbred C57BL , Obesity/metabolism , MicroRNAs/metabolism , Renal Insufficiency, Chronic/complications
9.
Gene ; 913: 148387, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38499211

ABSTRACT

BACKGROUND: Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are highly involved in the regulation of hepatocyte viability, proliferation, and plasticity. We have previously demonstrated that repression of H3K27 methylation in differentiated hepatic HepaRG cells by treatment with GSK-J4, an inhibitor of JMJD3 and UTX H3K27 demethylase activity, changed their phenotype, inducing differentiated hepatocytes to proliferate. In addition to the epigenetic enzymatic role in the regulation of the retro-differentiation process, emerging evidence indicate that microRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. Hence, the aim of this work is to investigate the impact of H3K27 methylation on miRNAs expression profile and its role in the regulation of the differentiation status of human hepatic progenitors HepaRG cells. METHODS: A miRNA-sequencing was carried out in differentiated HepaRG cells treated or not with GSK-J4. Target searching and Gene Ontology analysis were performed to identify the molecular processes modulated by differentially expressed miRNAs. The biological functions of selected miRNAs was further investigated by transfection of miRNAs inhibitors or mimics in differentiated HepaRG cells followed by qPCR analysis, albumin ELISA assay, CD49a FACS analysis and EdU staining. RESULTS: We identified 12 miRNAs modulated by GSK-J4; among these, miR-27a-3p and miR- 423-5p influenced the expression of several proliferation genes in differentiated HepaRG cells. MiR-27a-3p overexpression increased the number of hepatic cells reentering proliferation. Interestingly, both miR-27a-3p and miR-423-5p did not affect the expression levels of genes involved in the differentiation of progenitors HepaRG cells. CONCLUSIONS: Modulation of H3K27me3 methylation in differentiated HepaRG cells, by GSK-J4 treatment, influenced miRNA' s expression profile pushing liver cells towards a proliferating phenotype. We demonstrated the involvement of miR-27a-3p in reinducing proliferation of differentiated hepatocytes suggesting a potential role in liver plasticity.


Subject(s)
Hepatocytes , MicroRNAs , Humans , Hepatocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic
10.
Article in English | MEDLINE | ID: mdl-38306950

ABSTRACT

The specific miRNA regulation triggered by enzyme-treated soybean protein in response to well-known stressors, such as the prophylactic use of the antimicrobial oxytetracycline, remains unknown. Hence, this study aimed to evaluate the regulatory changes of hepatic miRNAs induced by oxytetracycline and enzyme-treated soybean protein in largemouth bass dietary formulations. The experiment was designed with three groups: the normal control (NC), the oxytetracycline exposure treatment group (OTC), and the pre-treatment with enzyme-treated soybean protein before oxytetracycline exposure group (ETSP). miRNA sequencing was employed to characterize the differences between these groups. In conclusion, the NC group exhibited up-regulation of 13 host miRNAs and down-regulation of 1 miRNA compared to the OTC group, whereas the ETSP group showed an increasing trend of 36 host miRNAs and a decreasing trend of 13 host miRNAs compared to the OTC group. Nine miRNAs were identified as prudential targets for enzyme-treated soy protein, protecting the largemouth bass liver from oxytetracycline. Furthermore, gene ontology analysis revealed nine key miRNAs that mediate signaling pathways with significant differences. The cellular lipid metabolic process was identified as the most important biological process, and the propanoate metabolism pathway was highlighted as significant. These results will facilitate further exploration of the mechanism by which enzyme-treated soy protein alleviates the effects of oxytetracycline on largemouth bass in water environments.


Subject(s)
Bass , MicroRNAs , Oxytetracycline , Animals , Bass/genetics , Soybean Proteins/metabolism , Soybean Proteins/pharmacology , Oxytetracycline/pharmacology , Oxytetracycline/metabolism , Liver/metabolism , MicroRNAs/genetics
11.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203844

ABSTRACT

Breast milk, an indispensable source of immunological and nutrient components, is essential for the growth and development of newborn mammals. MicroRNAs (miRNAs) are present in various tissues and body fluids and are selectively packaged inside exosomes, a type of membrane vesicle. Milk exosomes have potential regulatory effects on the growth, development, and immunity of newborn piglets. To explore the differences in milk exosomes related to the breed and milk type, we isolated exosomes from colostrum and mature milk from domestic Bamei pigs and foreign Landrace pigs by using density gradient centrifugation and then characterized them by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Furthermore, the profiles and functions of miRNAs in the two types of pig milk exosomes were investigated using miRNA-seq and bioinformatics analysis. We identified a total of 1081 known and 2311 novel miRNAs in pig milk exosomes from Bamei and Landrace pigs. These differentially expressed miRNAs (DE-miRNAs) are closely associated with processes such as cell signaling, cell physiology, and immune system development. Functional enrichment analysis showed that DE-miRNA target genes were significantly enriched in endocytosis, the T cell receptor signaling pathway, and the Th17 cell differentiation signaling pathway. The exosomal miRNAs in both the colostrum and mature milk of the two pig species showed significant differences. Based on related signaling pathways, we found that the colostrum of local pig breeds contained more immune-system-development-related miRNAs. This study provides new insights into the possible function of milk exosomal miRNAs in the development of the piglet immune system.


Subject(s)
Body Fluids , Exosomes , MicroRNAs , Humans , Female , Pregnancy , Animals , Swine , Colostrum , Exosomes/genetics , MicroRNAs/genetics , Milk, Human , Sus scrofa
12.
Mol Biol Rep ; 51(1): 8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085380

ABSTRACT

BACKGROUND: Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS: The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS: The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- ß pathway and pathways related to metabolism and synthesis of glycan.


Subject(s)
MicroRNAs , Vitamin D , Animals , Swine , Vitamin D/pharmacology , Vitamin D/metabolism , Calcifediol/metabolism , MicroRNAs/genetics , Vitamins , Cholecalciferol/pharmacology , Dietary Supplements/analysis , Lung/metabolism
13.
BMC Genomics ; 24(1): 632, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872623

ABSTRACT

BACKGROUND: Tan and Hu sheep are well-known local breeds in China, producing lamb fur with unique ornamental and practical values highly appreciated by consumers worldwide. Fur quality is optimal at one month of age and gradually declines with time. Despite active research on its genetic mechanism using transcriptomic and whole genome bisulfite sequencing analysis, the main effective gene locus has not been found, and its regulatory mechanism is still unclear, which limits the breeding and improvement of fur traits. RESULTS: Scapular skin samples from newborn (1-month old) and adult (24-month old) Tan sheep were utilized for small ribonucleic acid (RNA) sequencing Principal Component Analysis (PCA) showed that the newborn and adult groups were completely separated. Differential expression analysis of micro-RNAs (miRNAs) identified 32 up-regulated miRNAs and 48 down-regulated miRNAs in the newborn groups. All up-regulated miRNAs were located in the imprinted. Dlk1-Gtl2 locus on chromosome 18, whereas all down-regulated miRNAs were distributed across the sheep chromosomes, without a clear pattern of positional consistency. Further, by systematically analyzing the target genes and signaling pathways of all 32 up-regulated miRNAs, we found that the PI3K-AKT signaling pathway has the potential to be targeted and regulated by most of the miRNAs in the Dlk1-Gtl2 region. In addition, we also re-analyzed miRNA sequencing data from public databases on Hu lambs (full sibling Hu lambs with high- and low-quality fur characteristics). Again, it was found that most of the up-regulated miRNAs in lambs with high-quality fur were also located in the Dlk1-Gtl2 region, whereas this patter was not present for down-regulated miRNAs. CONCLUSION: Sequencing of miRNAs in conjunction with public databases was employed to identify miRNAs within the imprinted Dlk1-Gtl2 region on chromosome 18, suggesting their potential roles as epigenetic regulators of fur traits. Small RNAs located at the Dlk1-Gtl2 locus were identified as having the potential to systematically regulate the PI3K-AKT signaling pathway, thereby indicating the relevance of the Dlk1-Gtl2/PI3K-AKT axis in the context of fur traits. Selection of parental specific expressed imprinted genes in the process of conserving and exploiting lamb fur traits should be emphasized.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Sheep/genetics , MicroRNAs/genetics , Genomic Imprinting , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Calcium-Binding Proteins/genetics
14.
Fish Shellfish Immunol ; 142: 109140, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797868

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) is an important cold-water fish widely cultivated in China. The frequent occurrence of viral diseases caused by infectious hematopoietic necrosis virus (IHNV) seriously restricted the healthy development of the rainbow trout farming industry. However, the immune defense mechanism induced by IHNV in rainbow trout has not been fully elucidated. In the present study, we detected mRNA and miRNA expression profiles in rainbow trout head kidney after IHNV infection using RNA-seq and identified key immune-related genes and miRNAs. The results showed that a total of 7486 genes and 277 miRNAs were differentially expressed, and numerous differentially expressed genes (DEGs) enriched in the immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway were significantly up-regulated, including LGP2, MDA5, TRIM25, IRF3, IRF7, TLR3, TLR7, TLR8, MYD88, and IFN1. Integration analysis identified six miRNAs (miR-141-y, miR-200-y, miR-144-y, miR-2188-y, miR-725-y, and miR-203-y) that target at least six key immune-related genes (TRIM25, LGP2, TLR3, TLR7, IRF3, and IRF7). Further, we verified selected immune-related mRNAs and miRNAs through qRT-PCR and confirmed the reliability of the RNA-seq results. These findings improve our understanding of the immune mechanism of rainbow trout infected with IHNV and provide basic data for future breeding for disease resistance in rainbow trout.


Subject(s)
Fish Diseases , Infectious hematopoietic necrosis virus , MicroRNAs , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Infectious hematopoietic necrosis virus/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , Toll-Like Receptor 7 , Toll-Like Receptor 3 , Head Kidney/metabolism , Reproducibility of Results , Immunity, Innate/genetics
15.
Article in English | MEDLINE | ID: mdl-37683358

ABSTRACT

Temperature is a critical factor that regulates the reproduction processes in teleost. However, the gonadal response mechanism to cold stress in fish remains largely unknown. In the present study, female zebrafish were exposed to different extents of low temperatures at 18 °C and 10 °C for 48 h. The ovarian histology was remarkably damaged after cold stress exposure. Integrated analysis of miRNA-mRNA was used to investigate the ovarian response to acute cold stress. A large number of mRNAs and miRNAs were altered by cold stress, which are involved in extensive biological processes. It is indicated that the signal transduction of MAPK and Calcium signaling pathway is highly engaged in zebrafish ovary to adapt to cold stress. The immune system was dysregulated by cold stress while the ovarian autophagy was activated. Remarkably increased gene number related to reproductive functions was identified in the cold stress at 10 °C compared to the control. The cold stress-induced dysregulated reproductive genes include star, hsd3b1, hsd17b1, inha, insl3, amh, nanos1 and foxl2. Combined with the dysregulated insulin, IGF and progesterone signaling, it is suggested that cold stress affects ovarian function in multiple aspects, including oocyte meiosis, folliculogenesis, final maturation and ovarian maintenance. On the other hand, the ovarian miRNA-mRNA regulatory network response to cold stress was also constructed. Overall, our result revealed the ovarian response to cold stress in zebrafish and provided insight into the fish adaptation mechanism to acute temperature change.


Subject(s)
MicroRNAs , Zebrafish , Female , Animals , Zebrafish/metabolism , MicroRNAs/genetics , Cold-Shock Response , RNA, Messenger/genetics , Cold Temperature
16.
Article in English | MEDLINE | ID: mdl-37690214

ABSTRACT

Red skin color in Plectropomus leopardus is important to its ornamental and economic value. However, the color of P. leopardus can change during the rearing process, darkening and turning black due to the influence of environmental background color. The underlying molecular mechanisms that regulate this phenomenon remain unclear. MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in numerous biological processes, such as skin differentiation and color formation in many animals. Therefore, we performed miRNA sequencing of P. leopardus skin before (initial) and after rearing with three different background colors (white, black, and blue) using Illumina sequencing to identify candidate miRNAs that may contribute to skin color differentiation. In total, 154,271,376 clean reads were obtained, with over 92 % of them successfully mapped to the P. leopardus reference genome. The miRNA length distributions of all samples displayed peaks around a typical length of 22 nt. Within these sequences, 243 known and 287 novel miRNAs were identified. A total of 65 significantly differentially expressed miRNAs (DEMs) were identified (P < 0.05), including 40 known DEMs and 25 novel DEMs. These DEMs included novel_561, miR-141-3p, and miR-129-5p, whose target genes were primarily associated with pigmentation related processes, including tyrosine metabolism, melanogenesis, and the Wnt signaling pathway. These findings shed light on the potential roles of miRNAs in the darkening of skin color in P. leopardus, thus enhancing our understanding of the molecular mechanisms involved in skin pigmentation differentiation in this species.


Subject(s)
Bass , MicroRNAs , Animals , Skin Pigmentation/genetics , MicroRNAs/genetics , Gene Expression Profiling , Bass/genetics , Skin/metabolism , Transcriptome
17.
Front Microbiol ; 14: 1236012, 2023.
Article in English | MEDLINE | ID: mdl-37601387

ABSTRACT

Background: Macrophages play an important role in regulating the course of spinal tuberculosis within the bone microenvironment. This study aimed to investigate the differential expression of miRNA in macrophage-derived exosomes within the tuberculosis-infected bone microenvironment, to identify miRNAs that hold potential as diagnostic markers and therapeutic targets. Methods: We established study cohorts for spinal tuberculosis, collected bone marrow blood samples, isolated macrophage exosomes, and performed exosome miRNA sequencing. A miRNA-mRNA co-expression network was constructed using WGCNA analysis. Gene GO analysis and KEGG pathway enrichment analysis were performed using KOBAS software. Target miRNAs were selected based on fold change, P-value, and false discovery rate, and their validation was carried out using qRT-PCR and ROC curve studies. Subsequently, we constructed a target gene network for these miRNAs and performed KEGG pathway enrichment analysis to explore the potential signaling mechanisms involved in regulating the disease course of spinal tuberculosis. Results: Our findings revealed that macrophages from the tuberculosis-infected bone microenvironment exhibited an M1 phenotype. The successful extraction of exosomes from macrophage supernatants was confirmed through electron microscopy, particle size analysis, and protein blot analysis. Exosome miRNA-seq demonstrated that 28 miRNAs were up-regulated, while 34 miRNAs were down-regulated in individuals with spinal tuberculosis. GO analysis and KEGG pathway enrichment analysis indicated that the differentially expressed miRNAs were involved in various biological processes, cell components, molecular functions, and signaling pathways, which collectively contribute to the regulation of the disease course of spinal tuberculosis. Notably, miRNA-125b-5p was successfully selected based on fold change, p-value, and false discovery rate. qRT-PCR validation further confirmed the significant up-regulation of miRNA-125b-5p in spinal tuberculosis. The ROC curve revealed that miR-125b-5p is a potential diagnostic biomarker for spinal tuberculosis. Moreover, construction of the miRNA-125b-5p target gene network and subsequent KEGG enrichment analysis highlighted the importance of MAPK, TNF, Ras, Rap1, and the PI3K-Akt signaling pathways in the regulation of the disease course of spinal tuberculosis. Conclusion: Our study demonstrates differential expression of miRNAs in macrophage-derived exosomes in the tuberculosis-infected bone microenvironment. Specifically, MiRNA-125b-5p is significantly up-regulated in spinal tuberculosis and shows potential as a diagnostic biomarker for spinal tuberculosis.

18.
Front Plant Sci ; 14: 1163232, 2023.
Article in English | MEDLINE | ID: mdl-37396641

ABSTRACT

Recently, a novel poplar mosaic disease caused by bean common mosaic virus (BCMV) was investigated in Populus alba var. pyramidalis in China. Symptom characteristics, physiological performance of the host, histopathology, genome sequences and vectors, and gene regulation at the transcriptional and posttranscriptional levels were analyzed and RT-qPCR (quantitative reverse transcription PCR) validation of expression was performed in our experiments. In this work, the mechanisms by which the BCMV pathogen impacts physiological performance and the molecular mechanisms of the poplar response to viral infection were reported. The results showed that BCMV infection decreased the chlorophyll content, inhibited the net photosynthesis rate (Pn) and stomatal conductance (Gs), and significantly changed chlorophyll fluorescence parameters in diseased leaves. Transcriptome analysis revealed that the expression of the majority of DEGs (differentially expressed genes) involved in the flavonoid biosynthesis pathway was promoted, but the expression of all or almost all DEGs associated with photosynthesis-antenna proteins and the photosynthesis pathway was inhibited in poplar leaves, suggesting that BCMV infection increased the accumulation of flavonoids but decreased photosynthesis in hosts. Gene set enrichment analysis (GSEA) illustrated that viral infection promoted the expression of genes involved in the defense response or plant-pathogen interaction. MicroRNA-seq analysis illustrated that 10 miRNA families were upregulated while 6 families were downregulated in diseased poplar leaves; moreover, miR156, the largest family with the most miRNA members and target genes, was only differentially upregulated in long-period disease (LD) poplar leaves. Integrated transcriptome and miRNA-seq analyses revealed 29 and 145 candidate miRNA-target gene pairs; however, only 17 and 76 pairs, accounting for 2.2% and 3.2% of all DEGs, were authentically negatively regulated in short-period disease (SD) and LD leaves, respectively. Interestingly, 4 miR156/SPL (squamosa promoter-binding-like protein) miRNA-target gene pairs were identified in LD leaves: the miR156 molecules were upregulated, but SPL genes were downregulated. In conclusion, BCMV infection significantly changed transcriptional and posttranscriptional gene expression in poplar leaves, inhibited photosynthesis, increased the accumulation of flavonoids, induced systematic mosaic symptoms, and decreased physiological performance in diseased poplar leaves. This study elucidated the fine-tuned regulation of poplar gene expression by BCMV; moreover, the results also suggested that miR156/SPL modules played important roles in the virus response and development of viral systematic symptoms in plant virus disease.

19.
Front Genet ; 14: 1105893, 2023.
Article in English | MEDLINE | ID: mdl-37303951

ABSTRACT

Introduction: Legg-Calvé-Perthes disease or Perthes disease is a condition that occurs in children aged 2 to 15 years, and is characterized by osteonecrosis of the femoral head, which results in physical limitations. Despite ongoing research, the pathogenesis and molecular mechanisms underlying the development of Perthes disease remain unclear. In order to obtain further insights, the expression patterns of long non-coding RNAs (lncRNAs), miRNAs, and mRNAs in a rabbit model of Perthes disease were analyzed in this study by transcriptome sequencing. Methods and results: The results of RNA-seq analyses revealed that 77 lncRNAs, 239 miRNAs, and 1027 mRNAs were differentially expressed in the rabbit model. This finding suggested that multiple genetic pathways are involved in the development of Perthes disease. A weighted gene co-expression network analysis (WGCNA) network was subsequently constructed using the differentially expressed mRNAs (DEmRNAs), and network analysis revealed that the genes associated with angiogenesis and platelet activation were downregulated, which was consistent with the findings of Perthes disease. A competing endogenous RNA (ceRNA) network was additionally constructed using 29 differentially expressed lncRNAs (including HIF3A and LOC103350994), 28 differentially expressed miRNAs (including ocu-miR-574-5p and ocu-miR-324-3p), and 76 DEmRNAs (including ALOX12 and PTGER2). Disscusion: The results obtained herein provide novel perspectives regarding the pathogenesis and molecular mechanisms underlying the development of Perthes disease. The findings of this study can pave the way for the development of effective therapeutic strategies for Perthes disease in future.

20.
Open Life Sci ; 18(1): 20220605, 2023.
Article in English | MEDLINE | ID: mdl-37250847

ABSTRACT

Testis size is important for identifying breeding animals with adequate sperm production. The aim of this study was to survey the expression profile of mRNA and miRNA in testis tissue from rams carrying different FecB genotypes, including the wild-type and heterozygous genotypes in Tibetan sheep. Comparative transcriptome profiles for ovine testes were established for wild-type and heterozygote Tibetan sheep by next-generation sequencing. RNA-seq results identified 3,910 (2,034 up- and 1,876 downregulated) differentially expressed (DE) genes and 243 (158 up- and 85 downregulated) DE microRNAs (miRNAs) in wild-type vs heterozygote sheep, respectively. Combined analysis of mRNA-seq and miRNA-seq revealed that 20 miRNAs interacted with 48 true DE target genes in wild-type testes compared to heterozygous genotype testes. These results provide evidence for a functional series of genes operating in Tibetan sheep testis. In addition, quantitative real-time PCR analysis showed that the expression trends of randomly selected DE genes in testis tissues from different genotypes were consistent with high-throughput sequencing results.

SELECTION OF CITATIONS
SEARCH DETAIL