Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.876
Filter
1.
Mutat Res ; 829: 111874, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986233

ABSTRACT

The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.

2.
Virology ; 597: 110161, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981317

ABSTRACT

Epstein-Barr virus (EBV) is linked to lymphoma and epithelioma but lacks drugs specifically targeting EBV-positive tumors. BamHI A Rightward Transcript (BART) miRNAs are expressed in all EBV-positive tumors, suppressing both lytic infection and host cell apoptosis. We identified suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylase enzymes, as an agent that suppresses BART promoter activity and transcription of BART miRNAs. SAHA treatment demonstrated a more pronounced inhibition of cell proliferation in EBV-positive cells compared to EBV-negative cells, affecting both p53 wild-type and mutant gastric epithelial cells. SAHA treatment enhanced lytic infection in wild-type EBV-infected cells, while also enhancing cell death in BZLF1-deficient EBV-infected cells. It reduced BART gene expression by 85% and increased the expression of proapoptotic factors targeted by BART miRNAs. These findings suggest that SAHA not only induces lytic infection but also leads to cell death by suppressing BART miRNA transcription and promoting the apoptotic program.

3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000190

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with various complications, including diabetic foot, which can lead to significant morbidity and mortality. Non-healing foot ulcers in diabetic patients are a major risk factor for infections and amputations. Despite conventional treatments, which have limited efficacy, there is a need for more effective therapies. MicroRNAs (miRs) are small non-coding RNAs that play a role in gene expression and have been implicated in diabetic wound healing. miR expression was analyzed through RT-qPCR in 41 diabetic foot Mexican patients and 50 controls. Diabetic foot patients showed significant increases in plasma levels of miR-17-5p (p = 0.001), miR-191-5p (p = 0.001), let-7e-5p (p = 0.001), and miR-33a-5p (p = 0.005) when compared to controls. Elevated levels of miR-17, miR-191, and miR-121 correlated with higher glucose levels in patients with diabetic foot ulcers (r = 0.30, p = 0.004; r = 0.25, p = 0.01; and r = 0.21, p = 0.05, respectively). Levels of miR-17 showed the highest diagnostic potential (AUC 0.903, p = 0.0001). These findings underscore the possible role of these miRs in developing diabetes complications. Our study suggests that high miR-17, miR-191, and miR-121 expression is strongly associated with higher glucose levels and the development of diabetic foot ulcers.


Subject(s)
Circulating MicroRNA , Diabetes Mellitus, Type 2 , Diabetic Foot , Humans , Diabetic Foot/blood , Diabetic Foot/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Male , Female , Middle Aged , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Aged , MicroRNAs/blood , MicroRNAs/genetics , Biomarkers/blood , Case-Control Studies , Gene Expression Profiling
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000297

ABSTRACT

Obesity is a major public health concern that is associated with negative health outcomes. Exercise and dietary restriction are commonly recommended to prevent or combat obesity. This study investigates how voluntary exercise mitigates abnormal gene expression in the hypothalamic arcuate nucleus (ARC) of diet-induced obese (DIO) rats. Using a transcriptomic approach, novel genes in the ARC affected by voluntary wheel running were assessed alongside physiology, pharmacology, and bioinformatics analysis to evaluate the role of miR-211 in reversing obesity. Exercise curbed weight gain and fat mass, and restored ARC gene expression. High-fat diet (HFD) consumption can dysregulate satiety/hunger mechanisms in the ARC. Transcriptional clusters revealed that running altered gene expression patterns, including inflammation and cellular structure genes. To uncover regulatory mechanisms governing gene expression in DIO attenuation, we explored miR-211, which is implicated in systemic inflammation. Exercise ameliorated DIO overexpression of miR-211, demonstrating its pivotal role in regulating inflammation in the ARC. Further, in vivo central administration of miR-211-mimic affected the expression of immunity and cell cycle-related genes. By cross-referencing exercise-affected and miR-211-regulated genes, potential candidates for obesity reduction through exercise were identified. This research suggests that exercise may rescue obesity through gene expression changes mediated partially through miR-211.


Subject(s)
Arcuate Nucleus of Hypothalamus , Diet, High-Fat , MicroRNAs , Obesity , Physical Conditioning, Animal , Animals , Arcuate Nucleus of Hypothalamus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/genetics , Obesity/metabolism , Rats , Female , Diet, High-Fat/adverse effects , Gene Expression Regulation , Inflammation/genetics , Inflammation/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000336

ABSTRACT

Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.


Subject(s)
MicroRNAs , Neurodegenerative Diseases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Animals , Gene Expression Regulation
6.
Cancers (Basel) ; 16(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001478

ABSTRACT

The human endometrium experiences significant cyclic morphological and biochemical changes throughout the menstrual cycle to prepare for embryo implantation. These processes are meticulously regulated by ovarian steroids and various locally expressed genes, encompassing inflammatory reactions, apoptosis, cell proliferation, angiogenesis, differentiation (tissue formation), and tissue remodeling. MicroRNAs (miRNAs) have been recognized as crucial regulators of gene expression, with their altered expression being linked to the onset and progression of various disorders, including cancer. This review examines the expression of miRNAs in the endometrium and their potential regulatory roles under pathological conditions such as endometriosis, recurrent implantation failure and endometrial cancer. Given miRNAs' critical role in maintaining gene expression stability, understanding the regulatory mechanisms of endometrial miRNAs and identifying their specific target genes could pave the way for developing preventive and therapeutic strategies targeting specific genes associated with these reproductive disorders.

7.
Microrna ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005129

ABSTRACT

Cancer, the second greatest cause of mortality worldwide, frequently causes bone me-tastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord com-pression. These injurious incidents leave uncomfortably large holes in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and ex-hibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various bio-logical processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.

8.
Oncotarget ; 15: 470-485, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39007281

ABSTRACT

microRNAs (miRNAs) are small, non-coding RNAs that regulate expression of multiple genes. MiR-193a-3p functions as a tumor suppressor in many cancer types, but its effect on inducing specific anti-tumor immune responses is unclear. Therefore, we examined the effect of our lipid nanoparticle (LNP) formulated, chemically modified, synthetic miR-193a-3p mimic (INT-1B3) on anti-tumor immunity. INT-1B3 inhibited distant tumor metastasis and significantly prolonged survival. INT-1B3-treated animals were fully protected against challenge with autologous tumor cells even in absence of treatment indicating long-term immunization. Protection against autologous tumor cell challenge was hampered upon T cell depletion and adoptive T cell transfer abrogated tumor growth. Transfection of tumor cells with our miR-193a-3p mimic (1B3) resulted in tumor cell death and apoptosis accompanied by increased expression of DAMPs. Co-culture of 1B3-transfected tumor cells and immature DC led to DC maturation and these mature DC were able to stimulate production of type 1 cytokines by CD4+ and CD8+ T cells. CD4-CD8- T cells also produced type 1 cytokines, even in response to 1B3-transfected tumor cells directly. Live cell imaging demonstrated PBMC-mediated cytotoxicity against 1B3-transfected tumor cells. These data demonstrate for the first time that miR-193a-3p induces long-term immunity against tumor development via modulation of the tumor microenvironment and induction of immunogenic cell death.


Subject(s)
MicroRNAs , Nanoparticles , Tumor Microenvironment , MicroRNAs/genetics , Animals , Tumor Microenvironment/immunology , Mice , Humans , Nanoparticles/chemistry , Immunogenic Cell Death/drug effects , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Apoptosis , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice, Inbred C57BL , Immunity, Cellular , CD8-Positive T-Lymphocytes/immunology , Female , Transfection , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Cytokines/metabolism , Liposomes
9.
Article in English | MEDLINE | ID: mdl-39008951

ABSTRACT

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. At present, the pathogenesis has not been clarified, and the clinical application of drugs and lifestyle intervention may not prevent disease progression. This study aimed to investigate how circ_0043314 regulates ovarian granulosa cell biological functions to provide theoretic basis for treatment of patients with polycystic ovary syndrome (PCOS). MicroRNA (miR)-146b-3p/Apelin 13 axis was used to investigate the mechanism by which circ_0043314 regulated ovarian granulosa cell proliferation and apoptosis in polycystic ovary syndrome (PCOS) via microRNA (miR)-146b-3p/Apelin 13 axis. Participants/Materials, Methods: Ovarian tissues (cortical tissues) from 35 PCOS patients and 35 normal controls, as well as HEK293T and human ovarian granulosa cell line (KGN, COV434) were included in this study. We examined the expression levels of circ_0043314, miR-146b-3p, and Apelin 13 in PCOS tissues. Ovarian granulosa cells were transfected with corresponding plasmids to clarify the influence of circ_0043314, miR-146b-3p, or Apelin 13 on proliferation and apoptosis of ovarian granulosa cells through MTT and flow cytometry assays. Moreover, the relationships among circ_0043314, miR-146b-3p, and Apelin 13 were analyzed through dual-luciferase and RIP assays. RESULTS: Circ_0043314 and Apelin 13 were highly expressed and miR-146b-3p was lowly expressed in ovarian tissues of PCOS compared with non-PCOS controls. Downregulation of circ_0043314 or upregulation of miR-146b-3p hindered ovarian granulosa cell proliferation and advanced its apoptosis. Downregulation of miR-146b-3p reversed the impacts of downregulation of circ_0043314, and overexpression of Apelin 13 counteracted the influences of upregulation of miR-146b-3p in ovarian granulosa cells. Mechanically, circ_0043314 could bind to miR-146b-3p, and miR-146b-3p directly targeted and modulated Apelin 13 expression. LIMITATIONS: This study was limited by the lack of animal experiments. CONCLUSION: Our data demonstrated that circ_0043314 enhances ovarian granulosa cell proliferation and suppresses its apoptosis via miR-146b-3p/Apelin 13 axis.

10.
J Gene Med ; 26(7): e3713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949075

ABSTRACT

BACKGROUND: The present study aimed to identify dysregulated genes, molecular pathways, and regulatory mechanisms in human papillomavirus (HPV)-associated cervical cancers. We have investigated the disease-associated genes along with the Gene Ontology, survival prognosis, transcription factors and the microRNA (miRNA) that are involved in cervical carcinogenesis, enabling a deeper comprehension of cervical cancer linked to HPV. METHODS: We used 10 publicly accessible Gene Expression Omnibus (GEO) datasets to examine the patterns of gene expression in cervical cancer. Differentially expressed genes (DEGs), which showed a clear distinction between cervical cancer and healthy tissue samples, were analyzed using the GEO2R tool. Additional bioinformatic techniques were used to carry out pathway analysis and functional enrichment, as well as to analyze the connection between altered gene expression and HPV infection. RESULTS: In total, 48 DEGs were identified to be differentially expressed in cervical cancer tissues in comparison to healthy tissues. Among DEGs, CCND1, CCNA2 and SPP1 were the key dysregulated genes involved in HPV-associated cervical cancer. The five common miRNAs that were identified against these genes are miR-7-5p, miR-16-5p, miR-124-3p, miR-10b-5p and miR-27a-3p. The hub-DEGs targeted by miRNA hsa-miR-27a-3p are controlled by the common transcription factor SP1. CONCLUSIONS: The present study has identified DEGs involved in HPV-associated cervical cancer progression and the various molecular pathways and transcription factors regulating them. These findings have led to a better understanding of cervical cancer resulting in the development and identification of possible therapeutic and intervention targets, respectively.


Subject(s)
Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , Papillomavirus Infections , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Humans , MicroRNAs/genetics , Female , Computational Biology/methods , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Gene Ontology , Biomarkers, Tumor/genetics , Prognosis , Databases, Genetic , Signal Transduction/genetics
11.
Article in English | MEDLINE | ID: mdl-38949985

ABSTRACT

This study focuses on acute myeloid leukemia (AML), a condition with a 5-year survival rate below 30% despite various treatment options. Recent strides in targeted therapies have shown promise, leading to better outcomes with minimal toxicity. These advances underscore the importance of discovering new diagnostic and prognostic targets for AML. In this context, the authors investigated the expression of microRNA-106b-5p (miR-106b-5p), Rab10 mRNA, and Rab10 proteins in peripheral blood and bone marrow (BM) samples from both healthy individuals and AML patients at different stages of the disease (initial diagnosis, recurrence, and complete remission). This examination aimed to identify potential biomarkers for AML diagnosis, treatment, and prognosis. From June 2021 to December 2022, they collected 100 BM and peripheral blood samples. The relative expression of miR-106b-5p and Rab10 mRNA in the BM of AML patients was measured using Real-time polymerase chain reaction (qRT-PCR), while the relative expression of Rab10 protein in serum was determined using the ELISA method. The chromosomal karyotype of initially diagnosed patients was analyzed using the R tape. The qRT-PCR results revealed that the expression of miR-106b-5p and Rab10 mRNA were significantly higher in patients at initial diagnosis and recurrence compared with healthy individuals and those in complete remission (p < 0.001). They observed a significant reduction in the expression of miR-106b-5p, Rab10 mRNA, and Rab10 protein in the BM and peripheral blood of patients during complete remission (p < 0.05), as demonstrated by dynamic monitoring of five patients in the initial group. Furthermore, they found a close association between the expression of miR-106b-5p and the number of white blood cells at the initial diagnosis in AML patients (p < 0.05). Spearman correlation analysis revealed a positive correlation among miR-106b-5p, Rab10 mRNA, and Rab10 proteins (p < 0.05). The diagnostic potential of miR-106b-5p and Rab10 proteins was underscored by Receiver Operating Characteristic (ROC) curve analysis, which demonstrated their high accuracy in AML diagnosis (AUC: 0.944 and 0.853, respectively; p < 0.0001). Additionally, Kaplan-Meier survival analysis suggested that lower expression of these markers was associated with better prognoses (p < 0.05). In summary, their findings propose miR-106b-5p and Rab10 proteins as promising biomarkers for AML, offering insights for diagnosis, treatment, and prognosis.

12.
Eur J Pharm Biopharm ; : 114384, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950718

ABSTRACT

Peripheral vascular condition, known as deep vein thrombosis (DVT), is a common ailment that may lead to deadly pulmonary embolism. Inflammation is closely connected to venous thrombosis, which results in blood stasis, leading to ischemia and hypoxia, as indicated by research. The objective of this research was to investigate the mechanism by which exosomes derived from adipose stem cells (ADSCs) prevent deep vein thrombosis. Our data showed that Exo-483 effectively reduced the thrombus weight in DVT rats by intravenous injection. Exo-483 decreased the expression of tissue factor (TF) protein, the influx of inflammatory cells into the thrombosed vein wall, and the levels of cytokines in the serum. Furthermore, Exo-483 suppressed the expression of Mitogen-activated protein kinase 1 (MAPK1) and decreased the expression of NLRP3 inflammasomes. In an oxygen-glucose deprivation (OGD) cell model, the tube-forming and migratory abilities of primary human umbilical vein endothelial cells (HUVEC) and EA.hy926 cells were suppressed by Exo-483 pretreatment.Exo-483 is also linked to regulating Dynamin-related protein 1 (DRP1) production downstream of MAPK1.By decreasing the mitochondrial localization and phosphorylation at the S616 site of DRP1, it diminishes the expression of NLRP3 inflammasomes. Moreover, according to Bioinformatics analysis, miR-483-5p was anticipated to target MAPK1. The research conducted by our team revealed that the miR-483-5p exosome derived from ADSCs exhibited anti-inflammatory properties through the modulation of downstream DRP1-NLRP3 expression by targeting MAPK1.The findings of this research propose that miR-483-5p may be regarded as an innovative treatment target for DVT.

14.
Microrna ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38952162

ABSTRACT

BACKGROUND: Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharma-cologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors. OBJECTIVE: This review synthesizes in silico, in vitro, and in vivo findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR-22, versus administering pharmacological antagomirs targeting miR-22-3p. METHODS: In silico analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological an-tagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups. RESULTS: Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or "sponge" that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs. CONCLUSIONS: From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmaco-logic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.

15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 334-340, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953257

ABSTRACT

Objective To explore the relationship between the expression levels of microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in the colonic mucosal tissue of patients with ulcerative colitis (UC) and the severity of the disease.Methods A total of 130 UC patients admitted to the Second Affiliated Hospital of Hebei North University from September 2021 to June 2023 were selected.According to the modified Mayo score system,the patients were assigned into an active stage group (n=85) and a remission stage group (n=45).According to the modified Truelove and Witts classification criteria,the UC patients at the active stage were assigned into a mild group (n=35),a moderate group (n=30),and a severe group (n=20).A total of 90 healthy individuals who underwent colonoscopy for physical examination or those who had normal colonoscopy results after single polypectomy and excluded other diseases were selected as the control group.The colonic mucosal tissues of UC patients with obvious lesions and the colonic mucosal tissue 20 cm away from the anus of the control group were collected.The levels of miR-155 and SOCS1 mRNA in tissues were determined by fluorescence quantitative PCR,and the expression of SOCS1 protein in tissues was determined by immunohistochemistry.The correlations of the levels of miR-155 and SOCS1 mRNA in the colonic mucosal tissue with the modified Mayo score of UC patients were analyzed.The values of the levels of miR-155 and SOCS1 mRNA in predicting the occurrence of severe illness in the UC patients at the active stage were evaluated.Results Compared with the control group and the remission stage group,the active stage group showed up-regulated expression level of miR-155,down-regulated level of SOCS1 mRNA,and decreased positive rate of SOCS1 protein in the colonic mucosal tissue (all P<0.001).The expression level of miR-155 and modified Mayo score in colonic mucosal tissues of UC patients at the active stage increased,while the mRNA level of SOCS1 was down-regulated as the disease evolved from being mild to severe (all P<0.001).The modified Mayo score was positively correlated with the miR-155 level and negative correlated with the mRNA level of SOCS1 in colonic mucosal tissues of UC patients (all P<0.001).The high miR-155 level (OR=2.762,95%CI=1.284-5.944,P=0.009),low mRNA level of SOCS1 (OR=2.617,95%CI=1.302-5.258,P=0.007),and modified Mayo score≥12 points (OR=3.232,95%CI=1.450-7.204,P=0.004) were all risk factors for severe disease in the UC patients at the active stage.The area under curve of miR-155 combined with SOCS1 mRNA in predicting severe illness in the UC patients at the active stage was 0.920.Conclusions The expression levels of miR-155 and SOCS1 mRNA were correlated with the disease severity in the UC patients at the active stage.The combination of the two indicators demonstrates good performance in predicting the occurrence of severe illness in UC patients at the active stage.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , Severity of Illness Index , Suppressor of Cytokine Signaling 1 Protein , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Colon/metabolism , Colon/pathology , Female , Male , Middle Aged , Adult
16.
J Extracell Biol ; 3(6): e160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947173

ABSTRACT

Congenital diaphragmatic hernia (CDH) is a life-threatening condition with high morbidity and mortality rates. The survival rate of neonates with severe CDH is reportedly only 10%-15%. However, prenatal prediction of severe cases is difficult, and the discovery of new predictive markers is an urgent issue. In this study, we focused on microRNAs (miRNAs) in amniotic fluid-derived small EVs (AF-sEVs). We identified four miRNAs (hsa-miR-127-3p, hsa-miR-363-3p, hsa-miR-493-5p, and hsa-miR-615-3p) with AUC > 0.8 to classify good prognosis group and poor prognosis group in human study. The AUC for hsa-miR-127-3p and hsa-miR-615-3p, for predicting the poor prognosis, were 0.93 and 0.91, respectively. In addition, in the in vivo study, the miRNA profiles of the lung tissues of CDH rats were different from those of control rats. Additionally, two elevated miRNAs (rno-miR-215-5p and rno-miR-148a-3p) in the lung tissues of CDH rats were increased in the AF-sEVs of CDH rats. Our results suggest that severe CDH neonates can be predicted prenatally with high accuracy using miRNAs contained in AF-sEVs. Furthermore, miRNA profile changes in AF-sEVs reflected the lung status in CDH. Our findings may contribute to the development of advanced perinatal care for patients with CDH.

17.
J Extracell Biol ; 3(7): e164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38947877

ABSTRACT

Previously, we showed that quantification of lymphoma-associated miRNAs miR-155-5p, -127-3p and let-7a-5p levels in plasma extracellular vesicles (EVs) report treatment response in patients with classic Hodgkin lymphoma (cHL). Prior to clinical implementation, quality control (QC) steps and validation are required to meet international regulatory standards. Most published EV-based diagnostic assays have yet to meet these requirements. In order to advance the assay towards regulatory compliance (e.g., IVDR 2017/746), we incorporated three QC steps in our experimental EV-miRNA quantitative real-time reverse-transcription PCR (q-RT-PCR) assay in an ISO-13485 certified quality-management system (QMS). Liposomes encapsulated with a synthetic (nematode-derived) miRNA spike-in controlled for EV isolation by automated size-exclusion chromatography (SEC). Additional miRNA spike-ins controlled for RNA isolation and cDNA conversion efficiency. After deciding on quality criteria, in total 107 out of 120 samples from 46 patients passed QC. Generalized linear mixed-effect modelling with bootstrapping determined the diagnostic performance of the quality-controlled data at an area under the curve (AUC) of 0.84 (confidence interval [CI]: 0.76-0.92) compared to an AUC of 0.87 (CI: 0.80-0.94) of the experimental assay. After the inclusion of QC steps, the accuracy of the assay was determined to be 78.5% in predicting active disease status in cHL patients during treatment. We demonstrate that a quality-controlled plasma EV-miRNA assay is technically robust, taking EV-miRNA as liquid biopsy assay an important step closer to clinical evaluation.

18.
Heliyon ; 10(12): e32875, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948044

ABSTRACT

Background: Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective: This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods: For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results: Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion: Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.

19.
Int J Pharm ; : 124435, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986965

ABSTRACT

RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.

20.
Oncol Lett ; 28(3): 404, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38983125

ABSTRACT

The abnormal expression of mucin 1 (MUC1) is a major cause of poor prognosis in patients with hepatocellular carcinoma (HCC). Competitive endogenous RNA demonstrates a novel regulatory mechanism that can affect the biological behavior of tumors. In the present study, the regulatory functions of hsa_circ_0055054 as well as those of microRNA (miR/miRNA) 122-5p on MUC1 expression and its role in HCC cell proliferation, migration and invasion, were evaluated. MUC1 expression was assessed using western blotting and reverse transcription-quantitative PCR. The phenotypic functions of the HCC cell lines were evaluated following MUC1 knockdown using Cell Counting Kit-8, wound healing and Transwell assays. Bioinformatics tools were used to identify specific miRNAs and circular (circ)RNAs that interact with and can regulate MUC1. The stability of circRNAs was assessed using a Ribonuclease R assay. The binding of circRNA/miRNA/MUC1 was assessed using dual-luciferase reporter assays and cellular function tests. Finally, in vivo experiments were performed using animal models. The results demonstrated that in MHCC97L cells, MUC1 and hsa_circ_0055054 were expressed at high levels while miR-122-5p was downregulated. The proliferation, migration and invasion of MHCC97L cells were suppressed by low MUC1 expression. hsa_circ_0055054 knockdown or miR-122-5p overexpression both led to a decrease in MUC1 expression. In MHCC97L cells with a low MUC1 expression caused by hsa_circ_0055054 knockdown, miR-122-5p inhibition resulted in the increased proliferation, migration and invasion of MHCC97L cells. In combination, the results of the present study indicate that hsa_circ_0055054 knockdown in MHCC97L cells leads to an increased expression of miR-122-5p and decreased expression of MUC1, which results in the inhibition of MHCC97L cell proliferation, migration and invasion.

SELECTION OF CITATIONS
SEARCH DETAIL
...