Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35062506

ABSTRACT

In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely "E-Ophtha" and "DIARETDB1", and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection.


Subject(s)
Deep Learning , Diabetic Retinopathy , Microaneurysm , Algorithms , Diabetic Retinopathy/diagnosis , Fundus Oculi , Humans , Microaneurysm/diagnostic imaging , Sensitivity and Specificity
2.
Comput Biol Med ; 139: 105000, 2021 12.
Article in English | MEDLINE | ID: mdl-34741905

ABSTRACT

Diabetic retinopathy (DR), as an important complication of diabetes, is the primary cause of blindness in adults. Automatic DR detection poses a challenge which is crucial for early DR screening. Currently, the vast majority of DR is diagnosed through fundus images, where the microaneurysm (MA) has been widely used as the most distinguishable marker. Research works on automatic DR detection have traditionally utilized manually designed operators, while a few recent researchers have explored deep learning techniques for this topic. But due to issues such as the extremely small size of microaneurysms, low resolution of fundus pictures, and insufficient imaging depth, the DR detection problem is quite challenging and remains unsolved. To address these issues, this research proposes a new deep learning model (Magnified Adaptive Feature Pyramid Network, MAFP-Net) for DR detection, which conducts super-resolution on low quality fundus images and integrates an improved feature pyramid structure while utilizing a standard two-stage detection network as the backbone. Our proposed detection model needs no pre-segmented patches to train the CNN network. When tested on the E-ophtha-MA dataset, the sensitivity value of our method reached as high as 83.5% at false positives per image (FPI) of 8 and the F1 value achieved 0.676, exceeding all those of the state-of-the-art algorithms as well as the human performance of experienced physicians. Similar results were achieved on another public dataset of IDRiD.


Subject(s)
Diabetic Retinopathy , Microaneurysm , Algorithms , Diabetic Retinopathy/diagnostic imaging , Fundus Oculi , Humans , Microaneurysm/diagnostic imaging
3.
Biomed Eng Online ; 19(1): 21, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295576

ABSTRACT

BACKGROUND: As one of the major complications of diabetes, diabetic retinopathy (DR) is a leading cause of visual impairment and blindness due to delayed diagnosis and intervention. Microaneurysms appear as the earliest symptom of DR. Accurate and reliable detection of microaneurysms in color fundus images has great importance for DR screening. METHODS: A microaneurysms' detection method using machine learning based on directional local contrast (DLC) is proposed for the early diagnosis of DR. First, blood vessels were enhanced and segmented using improved enhancement function based on analyzing eigenvalues of Hessian matrix. Next, with blood vessels excluded, microaneurysm candidate regions were obtained using shape characteristics and connected components analysis. After image segmented to patches, the features of each microaneurysm candidate patch were extracted, and each candidate patch was classified into microaneurysm or non-microaneurysm. The main contributions of our study are (1) making use of directional local contrast in microaneurysms' detection for the first time, which does make sense for better microaneurysms' classification. (2) Applying three different machine learning techniques for classification and comparing their performance for microaneurysms' detection. The proposed algorithm was trained and tested on e-ophtha MA database, and further tested on another independent DIARETDB1 database. Results of microaneurysms' detection on the two databases were evaluated on lesion level and compared with existing algorithms. RESULTS: The proposed method has achieved better performance compared with existing algorithms on accuracy and computation time. On e-ophtha MA and DIARETDB1 databases, the area under curve (AUC) of receiver operating characteristic (ROC) curve was 0.87 and 0.86, respectively. The free-response ROC (FROC) score on the two databases was 0.374 and 0.210, respectively. The computation time per image with resolution of 2544×1969, 1400×960 and 1500×1152 is 29 s, 3 s and 2.6 s, respectively. CONCLUSIONS: The proposed method using machine learning based on directional local contrast of image patches can effectively detect microaneurysms in color fundus images and provide an effective scientific basis for early clinical DR diagnosis.


Subject(s)
Fundus Oculi , Image Processing, Computer-Assisted/methods , Machine Learning , Microaneurysm/diagnostic imaging , Molecular Imaging , Area Under Curve , Humans , ROC Curve , Time Factors
4.
Health Inf Sci Syst ; 5(1): 14, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29147563

ABSTRACT

Microaneurysms (MAs) are known as early signs of diabetic-retinopathy which are called red lesions in color fundus images. Detection of MAs in fundus images needs highly skilled physicians or eye angiography. Eye angiography is an invasive and expensive procedure. Therefore, an automatic detection system to identify the MAs locations in fundus images is in demand. In this paper, we proposed a system to detect the MAs in colored fundus images. The proposed method composed of three stages. In the first stage, a series of pre-processing steps are used to make the input images more convenient for MAs detection. To this end, green channel decomposition, Gaussian filtering, median filtering, back ground determination, and subtraction operations are applied to input colored fundus images. After pre-processing, a candidate MAs extraction procedure is applied to detect potential regions. A five-stepped procedure is adopted to get the potential MA locations. Finally, deep convolutional neural network (DCNN) with reinforcement sample learning strategy is used to train the proposed system. The DCNN is trained with color image patches which are collected from ground-truth MA locations and non-MA locations. We conducted extensive experiments on ROC dataset to evaluate of our proposal. The results are encouraging.

SELECTION OF CITATIONS
SEARCH DETAIL