Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.347
Filter
1.
Mol Pharm ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088690

ABSTRACT

Nanoparticle-loaded dissolving microneedles (DMNs) have attracted increasing attention due to their ability to provide high drug loading, adjustable drug release behavior, and enhanced therapeutic efficiency. However, such delivery systems still face unsatisfied drug delivery efficiency due to insufficient driving force to promote nanoparticle penetration and the lack of in vivo fate studies to guide formulation design. Herein, an aggregation-caused quenching (ACQ) probe (P4) was encapsulated in l-arginine (l-Arg)-based nanomicelles, which was further formulated into nitric oxide (NO)-propelled nanomicelle-integrated DMNs (P4/l-Arg NMs@DMNs) to investigate their biological fate. The P4 probe could emit intense fluorescence signals in intact nanomicelles, while quenching with the dissociation of nanomicelles, providing a "distinguishable" method for tracking the fate of nanomicelles at a different status. l-Arg was demonstrated to self-generate NO under the tumor microenvironment with excessive reactive oxygen species (ROS), providing a pneumatic force to promote the penetration of nanomicelles in both three-dimensional (3D)-cultured tumor cells and melanoma-bearing mice. Compared with passive microneedles (P4 NMs@DMNs) without a NO propellant, the P4/l-Arg NMs@DMNs possessed a good NO production performance and higher nanoparticle penetration capacity. In conclusion, this study offered an ACQ probe-based biological fate tracking approach to demonstrate the potential of NO-propelled nanoparticle-loaded DMNs in penetration enhancement for topical tumor therapy.

2.
Small ; : e2401551, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109958

ABSTRACT

Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.

3.
Iran J Pharm Res ; 23(1): e138857, 2024.
Article in English | MEDLINE | ID: mdl-39108646

ABSTRACT

Background: Scar is an unpleasant skin lesion that occurs following deep wounds or burns. The application of local triamcinolone is a common treatment for scar treatment and prevention, which should be repeated several times in conventional dosage forms. An effort has been made here to provide a prolonged triamcinolone dermal delivery by microneedle technology, which can also be used for wound closure. Objectives: This study aimed to develop a long-lasting polylactic acid (PLA) microneedle patch for the prolonged release of triamcinolone acetonide (TrA) that could potentially be used for closure of wound edges and scar prevention and treatment. Methods: In this study, 3% and 10% TrA-containing polymeric microneedles were fabricated using the micro molding-solvent casting method. Optical microscopy, X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) were used for the characterization of microneedles. Mechanical strength was evaluated using a compression test and methylene blue staining. Additionally, the insertion depth was determined by histopathological sectioning of human skin samples and also insertion into Parafilm®M as a skin model. The in vitro drug release profile of the microneedles was studied over 34 days, and the kinetic model was determined. The ex-vivo skin permeation of TrA was studied using a Franz-diffusion cell. Results: The TrA-containing PLA microneedles were fabricated with a uniform structure without any failure, deterioration, or loss of needles. Fourier-transform infrared spectroscopy and differential scanning calorimetry showed no interaction between TrA and PLA, and no effect on crystallinity and thermal behavior of TrA on polymer was detected. Microneedles showed appropriate mechanical properties, which were able to penetrate to about 900 - 1000 µm depth. Release profile from the whole body of 10% and 3% microneedle fitted to Higuchi model with cumulative amounts of 625 µg and 201.64 µg over 34 days. Release from the needles followed zero-order kinetic with cumulative amounts of 30.04 µg and 20.36 µg for 10% and 3%, respectively, for 34 days. Permeation was calculated to be 17 µg/day for 10% TrA-containing microneedle. Conclusions: The results suggested that suitable PLA microneedles containing TrA with prolonged release behavior can be successfully constructed with the solvent casting method.

4.
Nano Lett ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115188

ABSTRACT

Carbon monoxide (CO) has emerged as a promising therapeutic agent, yet ensuring safe and precise CO delivery remains challenging. Here, we report a removable hydrogel-forming microneedle (MN) reactor for CO delivery via photocatalysis, with an emphasis on chemosensitization. Upon application, body fluids absorbed by the MNs dissolve the effervescent agents, leading to the generation of carbon dioxide (CO2) and triggering the release of the chemotherapeutics cisplatin. Meanwhile, the photocatalysts (PCs) trapped within MNs convert CO2 to CO under 660 nm light irradiation. These PCs can be removed by hydrogel-forming MNs, thereby mitigating potential biological risks associated with residual PCs. Both in vitro and in vivo experiments showed that MN-mediated CO delivery significantly improved tumor sensitivity to cisplatin by suppressing DNA repair, using an A375/CDDP melanoma model. This removable photocatalysis MN reactor offers safe and precise local delivery of CO, potentially creating new opportunities for CO or its combination therapies.

5.
Article in English | MEDLINE | ID: mdl-39136542

ABSTRACT

INTRODUCTION: Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues. AREAS COVERED: This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer. EXPERT OPINION: Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.

6.
J Nanobiotechnology ; 22(1): 489, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143532

ABSTRACT

Macrophages play a pivotal role in the healing of diabetic ulcers. The sustained elevation of glucose levels damages the insulin signaling pathway in macrophages, leading to dysfunctional macrophages that struggle to transition from pro-inflammatory (M1) to reparative (M2) states. Therefore, modulating macrophage inflammatory responses via the insulin pathway holds promise for diabetic ulcer treatment. Additionally, the presence of biofilm impedes drug penetration, and the resulting immunosuppressive microenvironment exacerbates the persistent infiltration of pro-inflammatory M1 macrophages. Therefore, we designed an array of dissolvable microneedle (denoted as NPF@MN) loaded with self-assembled nanoparticles that could deliver NPF nanoparticles, acid-sensitive NPF-releasing Protocatechualdehyde (PA) with hypoglycemic and insulin-like effects, regulating macrophage polarization to an anti-inflammatory M2 phenotype. Additionally, this study extensively examined the mechanism by which NPF@MN accelerates the healing of diabetic ulcers through the activation of the insulin signaling pathway. Through RNA-seq and GSEA analysis, we identified a reduction in the expression of pathway-related factors such as IR, IRS-1, IRS-2, and SHC. Our work presents an innovative therapeutic approach targeting the insulin pathway in diabetic ulcers and underscores its translational potential for clinical management.


Subject(s)
Biofilms , Insulin , Macrophages , Needles , Signal Transduction , Wound Healing , Animals , Wound Healing/drug effects , Insulin/metabolism , Mice , Macrophages/metabolism , Macrophages/drug effects , Biofilms/drug effects , Signal Transduction/drug effects , Male , Anti-Inflammatory Agents/pharmacology , Diabetes Mellitus, Experimental , Nanoparticles/chemistry , RAW 264.7 Cells , Mice, Inbred C57BL
7.
Article in English | MEDLINE | ID: mdl-39146498

ABSTRACT

Continuous sensing of biomarkers, such as potassium ions or pH, in wearable patches requires miniaturization of ion-selective sensor electrodes. Such miniaturization can be achieved by using nanostructured carbon materials as solid contacts in microneedle-based ion-selective and reference electrodes. Here we compare three carbon materials as solid contacts: colloid-imprinted mesoporous (CIM) carbon microparticles with ∼24-28 nm mesopores, mesoporous carbon nanospheres with 3-9 nm mesopores, and Super P carbon black nanoparticles without internal porosity but with textural mesoporosity in particle aggregates. We compare the effects of carbon architecture and composition on specific capacitance of the material, on the ability to incorporate ion-selective membrane components in the pores, and on sensor performance. Functioning K+ and H+ ion-selective electrodes and reference electrodes were obtained with gold-coated stainless-steel microneedles using all three types of carbon. The sensors gave near-Nernstian responses in clinically relevant concentration ranges, were free of potentially detrimental water layers, and showed no response to O2. They all exhibited sufficiently low long-term potential drift values to permit calibration-free, continuous operation for close to 1 day. In spite of the different specific capacitances and pore architecture of the three types of carbon, no significant difference in potential stability for K+ ion sensing was observed between electrodes that used each material. In the observed drift values, factors other than the carbon solid contact are likely to play a role, too. However, for pH sensing, electrodes with CIM as a carbon solid contact, which had the highest specific capacitance and best access to the pores, exhibited better long-term stability than electrodes with the other carbon materials.

8.
Int J Pharm ; : 124590, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153645

ABSTRACT

Burn is one of the most common skin injuries and accounts for 300,000 deaths annually. Debridement and antibiotic therapy are major burn treatments, however, as debridement is not always possible and many drugs have poor penetration into necrotic tissue, permeation enhancement is acquired. Another challenge is the short duration of topically applied drugs. This study aims to address both problems by combining in-situ forming gels and microneedles. A chitosan-based in-situ forming gel of hydrocortisone was applied to human burn eschar using microneedles. The formulation was optimized using Design-Expert software. Formulation characterization was done in terms of gelling time and temperature, thermal analysis, release phenomenon, rheology, texture analysis, and stability. Finally, animal studies on mice burn wound treatment were conducted. Results showed that optimized formulation controlled the drug release, and wherever microneedle was used, drug permeation and flux increased (P-value < 0.05). In all ex-vivo and in-vivo stages, gel plus microneedle (length of 1.5 mm and application mode of 2) produced the best results concerning increased flux and faster recovery of burn eschar. In conclusion, the in-situ forming gel with appropriate texture, quality, and stability in combination with microneedle can be a good candidate for the controlled release of drugs in third-degree burn eschars.

9.
Biosens Bioelectron ; 263: 116590, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39096764

ABSTRACT

Diabetes is a chronic disease with significant complications, necessitating regular treatment and checkups, which can be costly and time-consuming for patients. To address this, we developed the Sliding Microneedle (MN)-Lateral flow immunoassay strip (LFIAs) device that combines the advantages of MNs and LFIAs to detect IL-6, an independent biomarker for diabetes complications. This device offers rapid and highly sensitive detection of IL-6 by extracting interstitial fluid (ISF) through MNs and transferring it to LFIAs. The stainless MN, embedded in the 3D-printed Sliding MN-LFIAs device, was inserted into the skin at a 20° angle, minimizing blood contamination risk. With a filter paper attached to the MN surface, the device collected 4.65 ± 0.05 µL of ISF containing IL-6 within 90 s. The ISF was then transferred to the LFIAs using a running buffer. After a 15-min reaction, silver enhancement (SE) treatment was applied, allowing for the highly sensitive and specific detection of IL-6 at 102 pg/mL concentrations. The Sliding MN-LFIAs device successfully distinguished between normal and diabetic rat models, demonstrating its potential as an effective tool for detecting diabetes complications quickly and affordably.


Subject(s)
Biomarkers , Biosensing Techniques , Extracellular Fluid , Interleukin-6 , Needles , Animals , Interleukin-6/analysis , Extracellular Fluid/chemistry , Immunoassay/instrumentation , Immunoassay/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis , Rats , Equipment Design , Diabetes Mellitus, Experimental , Humans , Rats, Sprague-Dawley
10.
Article in English | MEDLINE | ID: mdl-39145481

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard therapy includes maximal surgical resection, radiotherapy, and adjuvant temozolomide (TMZ) administration. However, the rapid development of TMZ resistance and the impermeability of the blood-brain barrier (BBB) significantly hinder the therapeutic efficacy. Herein, we developed spatiotemporally controlled microneedle patches (BMNs) loaded with TMZ and niclosamide (NIC) to overcome GBM resistance. We found that hyaluronic acid (HA) increased the viscosity of bovine serum albumin (BSA) and evidenced that concentrations of BSA/HA exert an impact degradation rates exposure to high-temperature treatment, showing that the higher BSA/HA concentrations result in slower drug release. To optimize drug release rates and ensure synergistic antitumor effects, a 15% BSA/HA solution constituting the bottoms of BMNs was chosen to load TMZ, showing sustained drug release for over 28 days, guaranteeing long-term DNA damage in TMZ-resistant cells (U251-TR). Needle tips made from 10% BSA/HA solution loaded with NIC released the drug within 14 days, enhancing TMZ's efficacy by inhibiting the activity of O6-methylguanine-DNA methyltransferase (MGMT). BMNs exhibit superior mechanical properties, bypass the BBB, and gradually release the drug into the tumor periphery, thus significantly inhibiting tumor proliferation and expanding median survival in mice. The on-demand delivery of BMNs patches shows a strong translational potential for clinical applications, particularly in synergistic GBM treatment.

11.
Clin Cosmet Investig Dermatol ; 17: 1701-1710, 2024.
Article in English | MEDLINE | ID: mdl-39071847

ABSTRACT

Purpose: Alopecia significantly affects the appearance and psychology of patients, and pharmacological therapies and hair transplantation are the main treatments for alopecia, but both have limitations. This review aimed to summarize the non-pharmacological therapies that promote hair growth and regeneration. Patients and Methods: This is a non-systematic review. Multiple databases was searched with relevant data published between 1997 and 2024. Searching and screening followed the PRISMA guidelines. Results: Novel therapeutic modalities, such as gas molecules, platelet-rich plasma, laser, and microneedling, can change the microenvironment of hair follicles, activate hair follicle stem cells, and promote hair growth and regeneration. Conclusion: This paper reviews research on the application of non-pharmacological therapies in alopecia treatment and hair regeneration, with a view to providing an important basis for future research on alopecia treatment and the postoperative treatment of patients after hair transplantation.

12.
Int J Pharm X ; 8: 100267, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39055743

ABSTRACT

Glabridin (Gla) has been reported to have significant effects in scar treatment, and however, the water insolubility of Gla leads to its poor transdermal absorption ability, which affects its bioactivities. Therefore, we attempted to prepare the Gla dissolving microneedles (Gla-MN) to improve the absorbtion of Gla. After investigation of the 3 factors including the needle tip matrix concentration, the prescription concentration of backing material, and the dissolution method of Gla, we finally determined the process parameters of 10% hyaluronic acid (HA) as the needle tip and 5% polyvinyl alcohol (PVA) as the backing, according to which the Gla-MN was prepared with the good characteristics of high hardness, complete appearance and good in vitro dissolution ability. We then loaded Gla onto the microneedles and measured that the average drug loading of Gla-MN was 2.26 ± 0.11 µg/mg and the cumulative transdermal release of Gla-MN was up to 76.9% after 24 h. In addition, Gla-MN had good skin penetration properties, with Gla-MN penetrating at least 4 to 5 layers of parafilm. And the skin basically could return to normal after 4 h of piercing. Importantly, our results showed that Gla-MN had higher transdermal delivery and therapeutic effects against keloid than that of Gla at the same dosage.

13.
J Biomater Sci Polym Ed ; : 1-28, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083398

ABSTRACT

Itraconazole (ITZ) is one of the broad-spectrum antifungal agents for treating fungal keratitis. In clinical use, ITZ has problems related to its poor solubility in water, which results in low bioavailability when administered orally. To resolve the issue, we formulated ITZ into the inclusion complex (ITZ-IC) system using ß-cyclodextrin (ß-CD), which can potentially increase the solubility and bioavailability of ITZ. The molecular docking study has confirmed that the binding energy of ITZ with the ß-CD was -5.0 kcal/mol, indicating a stable conformation of the prepared inclusion complex. Moreover, this system demonstrated that the inclusion complex could significantly increase the solubility of ITZ up to 4-fold compared to the pure drug. Furthermore, an ocular drug delivery system was developed through dissolving microneedle (DMN) using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) as polymeric substances. The evaluation results of DMN inclusion complexes (ITZ-IC-DMN) showed excellent mechanical strength and insertion ability. In addition, ITZ-IC-DMN can dissolve rapidly upon application. The ex vivo permeation study revealed that 75.71% (equivalent to 3.79 ± 0.21 mg) of ITZ was permeated through the porcine cornea after 24 h. Essentially, ITZ-IC-DMN exhibited no signs of irritation in the HET-CAM study, indicating its safety for application. In conclusion, this study has successfully developed an inclusion complex formulation containing ITZ using ß-CD in the DMN system. This approach holds promise for enhancing the solubility and bioavailability of ITZ through ocular administration.

14.
Biomed Pharmacother ; 178: 117219, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39084080

ABSTRACT

A transdermal delivery system offers high bioavailability and favorable patient adherence, constituting an optimal approach for localized administration in rheumatoid arthritis (RA) treatment. However, the stratum corneum (SC) impedes the delivery efficiency of conventional transdermal drug delivery systems. Microneedles (MNs) can temporarily create micropores within the SC, enabling drug distribution via bypassing this barrier and enhancing transdermal delivery effectiveness. Notably, MNs provide a painless method of drug delivery through the skin and may directly modulate inflammation in immune cells by delivering drugs via the lymphatic system during transdermal administration. However, the MN delivery system is not suitable for drugs with low water solubility and stability. Additionally, major concerns exist regarding the safety of using MN delivery for highly cytotoxic drugs, given that it could result in high local drug concentration at the delivery site. While MNs exhibit some degree of targeted delivery to the immune and inflammatory environment, their targeting efficiency remains suboptimal. Nanoformulations have the potential to significantly address the limitations of MNs in RA treatment by improving drug targeting, solubility, stability, and biocompatibility. Therefore, this review provides a concise overview of the advantages, disadvantages, and mechanisms of different types of MNs for RA treatment. It specifically focuses on the application and advantages of combining nanoformulation with MNs for RA treatment and summarizes the current trends in the development of nanoformulations combined with MNs in the field of RA treatment, offering theoretical support for future advancements and clinical applications.

15.
Int J Pharm ; 661: 124400, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38950662

ABSTRACT

Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Microinjections , Needles , Nervous System Diseases , Humans , Drug Delivery Systems/methods , Nervous System Diseases/drug therapy , Animals , Microinjections/methods
16.
Bioeng Transl Med ; 9(4): e10662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036075

ABSTRACT

Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice. The current study shifts focus from efficacy to tolerability, hypothesizing that ePatch's microneedle array, which localizes the electric field to the superficial skin strata, will minimize nerve stimulation and improve patient comfort. We tested this hypothesis in 14 healthy adults, monitoring pain and other potential adverse effects associated with electroporation. Compared to the insertion of a traditional hypodermic needle, the ePatch was less painful. Adverse effects such as pain, tenderness, erythema and swelling at the application sites were minimal, transient, and statistically indistinguishable between the experimental and placebo ePatch application, suggesting excellent tolerability towards electroporation. In summary, ePatch has a favorable tolerability profile in humans and offers the potential for the safe use of electroporation in a variety of clinical settings, including DNA and mRNA vaccination.

17.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020456

ABSTRACT

Timely blood reperfusion after myocardial infarction (MI) paradoxically triggers ischemia-reperfusion injury (I/RI), which currently has not been conquered by clinical treatments. Among innovative repair strategies for myocardial I/RI, microRNAs (miRNAs) are expected as genetic tools to rescue damaged myocardium. Our previous study identified that miR-30d can provide protection against myocardial apoptosis and fibrosis to alleviate myocardial injury. Although common methods such as liposomes and viral vectors have been used for miRNA transfection, their therapeutic efficiencies have struggled with inefficient in vivo delivery, susceptible inactivation, and immunogenicity. Here, we establish a nanoparticle-patch system for miR-30d delivery in a murine myocardial I/RI model, which contains ZIF-8 nanoparticles and a conductive microneedle patch. Loaded with miR-30d, ZIF-8 nanoparticles leveraging the proton sponge effect enable miR-30d to escape the endocytic pathway, thus avoiding premature degradation in lysosomes. Meanwhile, the conductive microneedle patch offers a distinct advantage by intramyocardial administration for localized, effective, and sustained miR-30d delivery, and it simultaneously releases Au nanoparticles to reconstruct electrical impulses within the infarcted myocardium. Consequently, the nanoparticle-patch system supports the consistent and robust expression of miR-30d in cardiomyocytes. Results from echocardiography and electrocardiogram (ECG) revealed improved heart functions and standard ECG wave patterns in myocardial I/RI mice after implantation of a nanoparticle-patch system for 3 and 6 weeks. In summary, our work incorporated conductive microneedle patch and miR-30d nanodelivery systems to synergistically transcend the limitations of common RNA transfection methods, thus mitigating myocardial I/RI.

18.
ACS Appl Mater Interfaces ; 16(29): 37486-37496, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38989830

ABSTRACT

Oral ulcers, superficial lesions on the surface of the oral mucosa, have a high incidence rate, and their main symptoms include local pain and erosion. Lipopolysaccharide (LPS)-preconditioned bone marrow mesenchymal stem cells and their secreted exosomes (LPS-pre-Exos) have been shown to promote recovery in various inflammatory conditions and wounds. However, studies documenting LPS-pre-Exos as a therapeutic intervention for oral mucosal-like diseases are lacking. In this study, we prepared a silk fibroin microneedle (MN) patch consisting of LPS-pre-Exos and zeolitic imidazolate framework-8 (ZIF-8) that localized at the tip and base, respectively, and used this MN patch for oral ulcer treatment. Upon insertion into the oral mucosa, continuous LPS-pre-Exos release was observed, which promoted macrophage polarization and tissue healing. Additionally, the ZIF-8 framework in the MN patch facilitated the controlled release of Zn2+, which demonstrated potent antimicrobial properties via synergistic effects. The in vitro experimental results showed that the silk fibroin MN patch can continuously release LPS-pre-Exos and Zn2+ for more than 7 days. Thus, the LPS-pre-Exos and ZIF-8-loaded silk fibroin MN patch exhibited good anti-inflammatory and antibacterial properties, promoting oral ulcer healing, and showed good histocompatibility. Hence, it may represent a potentially valuable strategy for facilitating oral ulcer healing.


Subject(s)
Exosomes , Fibroins , Lipopolysaccharides , Mesenchymal Stem Cells , Needles , Oral Ulcer , Fibroins/chemistry , Fibroins/pharmacology , Animals , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Exosomes/metabolism , Exosomes/chemistry , Mice , Oral Ulcer/pathology , Oral Ulcer/drug therapy , Oral Ulcer/therapy , Oral Ulcer/metabolism , RAW 264.7 Cells , Male , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Zeolites/chemistry , Zeolites/pharmacology
19.
Pharmaceutics ; 16(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39065582

ABSTRACT

Microneedles are an innovation in the field of medicine that have the potential to revolutionize drug delivery, diagnostics, and cosmetic treatments. This innovation provides a minimally invasive means to deliver drugs, vaccines, and other therapeutic substances into the skin. This research investigates the design and manufacture of customized microneedle arrays using laser ablation. Laser ablation was performed using an ytterbium laser on a polymethyl methacrylate (PMMA) substrate to create a mold for casting polydimethylsiloxane (PDMS) microneedles. An experimental design was conducted to evaluate the effect of process parameters including laser pulse power, pulse width, pulse repetition, interval between pulses, and laser profile on the desired geometry of the microneedles. The analysis of variance (ANOVA) model showed that lasing interval, laser power, and pulse width had the highest influence on the output metrics (diameter and height) of the microneedle. The microneedle dimensions showed an increase with higher pulse width and vice versa with an increase in pulse interval. A response surface model indicated that the laser pulse width and interval (independent variables) significantly affect the response diameter and height (dependent variable). A predictive model was generated to predict the microneedle topology and aspect ratio varying from 0.8 to 1.5 based on the variation in critical input process parameters. This research lays the foundation for the design and fabrication of customized microneedles based on variations in specific input parameters for therapeutic applications in dermal sensors, drug delivery, and vaccine delivery.

20.
J Hazard Mater ; 476: 135182, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39002478

ABSTRACT

Conventional ex situ analytical methods for sediment pore water are susceptible to disruptions in the speciation equilibrium of metals due to changes in external conditions. This study introduced an innovative in situ method for detecting the three-dimensional distribution of labile copper (CuLabile) in sediment pore water with high spatial resolution using a highly stable microneedle electrochemical sensor. The sensor featured a nanoporous tip structure and embedded gold nanomaterials with excellent electrocatalytic performance. The nanoporous structure could prevent the nanomaterials from falling off because of friction during the in situ detection process in sediments. The sensor exhibited good detection performance under different salinity conditions with a detection limit of 0.2 nM. Vertical and three-dimensional distributions of CuLabile in sediment pore water were successfully obtained using the in situ microneedle sensor. The results showed that the concentration of CuLabile was in the range of 5.2-43.5 nM, with a maximum value at a depth of approximately 4 cm, while there was almost no difference in the horizontal direction of a specific sediment sample column. Furthermore, this functional sensor could be extended to the in situ detection of other labile metals in sediment pore water.

SELECTION OF CITATIONS
SEARCH DETAIL