Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39164880

ABSTRACT

In this paper, we innovatively proposed a highly uniform vesicle preparation scheme based on the intervesicle mechanical self-constraint effect of vesicle crowding. By adjusting the spacing of discrete microwell structures, we observed that during the self-assembly of phospholipid molecules in microwells to form giant unilamellar vesicles (GUVs), the scale swelling of the vesicles during the continuous growth process would lead to the crowding of vesicles in adjacent microwells, thus inducing the formation of intervesicle mechanical self-constraint effect. The results of the experiment showed that this paper obtained the optimized discretized microwell structure (micropillar side: 30 µm; pitch: 0 µm), and the corresponding lipid mass was measured and determined, yielding homogeneous giant GUVs of 37.9 ± 2.0 µm. In this paper, homogenized GUVs (∼40 µm) with different cholesterol concentrations (10, 20, and 30%) were obtained by this method, and the above vesicles were subjected to controlled electroporation experiment under external electric fields of 23, 31, and 41 kV/cm, respectively. It showed that the mechanical self-constraint effect of vesicle crowding induced by patterned microstructures during the self-assembly of phospholipid molecules significantly enhances the size homogeneity of GUVs, which would be helpful for the wide applications of GUVs in other areas such as cell-like models and controlled release of drugs.

2.
Antibiotics (Basel) ; 13(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39200011

ABSTRACT

Candida albicans is an emerging pathogen that poses a significant challenge due to its multidrug-resistant nature. There are two types of antifungal agents, fungicidal and fungistatic, with distinct mechanisms of action against fungal pathogens. Fungicidal agents kill fungal pathogens, whereas fungistatic agents inhibit their growth. The growth can be restored once the agent is removed and favorable conditions are established. Recognizing this difference is crucial as it influences treatment selection and infection prognosis. We present a technique based on optical nanomotion detection (ONMD) (i.e., observing the movement of the cells using an optical microscope) to discriminate rapidly between fungicidal (caspofungin) and fungistatic (fluconazole) drugs. The technique is based on the change in a yeast cell's nanomotion as a function of time during a two-hour treatment with the antifungal of interest followed by a one-hour growth period. The cells are entrapped in microwells in a microfluidic chip, which allows a quick exchange of growth medium and antifungal agent, enabling ONMD measurements on the same individual cells before and after treatment. This procedure permits to discriminate between fungicidal and fungistatic antifungals in less than 3 h, with single-cell resolution by observing if the nanomotion recovers after removing the treatment and reintroducing growth medium (YPD), or continues to drop. The simplicity of the approach holds promise for further development into a user-friendly device for rapid antifungal susceptibility testing (AFST), potentially being implemented in hospitals and medical centers worldwide in developed and developing countries.

3.
Biotechnol Bioeng ; 121(1): 306-316, 2024 01.
Article in English | MEDLINE | ID: mdl-37792882

ABSTRACT

Macrophages hold vital roles in immune defense, wound healing, and tissue homeostasis, and have the exquisite ability to sense and respond to dynamically changing cues in their microenvironment. Much of our understanding of their behavior has been derived from studies performed using in vitro culture systems, in which the cell environment can be precisely controlled. Recent advances in miniaturized culture platforms also offer the ability to recapitulate some features of the in vivo environment and analyze cellular responses at the single-cell level. Since macrophages are sensitive to their surrounding environments, the specific conditions in both macro- and micro-scale cultures likely contribute to observed responses. In this study, we investigate how the presence of neighboring cells influence macrophage activation following proinflammatory stimulation in both bulk and micro-scale culture. We found that in bulk cultures, higher seeding density negatively regulated the average TNF-α secretion from individual macrophages in response to inflammatory agonists, and this effect was partially caused by the reduced cell-to-media volume ratio. In contrast, studies conducted using microwells to isolate single cells and groups of cells revealed that increasing numbers of cells positively influences their inflammatory activation, suggesting that the absolute cell numbers in the system may be important. In addition, a single inflammatory cell enhanced the inflammatory state of a small group of cells. Overall, this work helps to better understand how variations of macroscopic and microscopic culture environments influence studies in macrophage biology and provides insight into how the presence of neighboring cells and the soluble environment influences macrophage activation.


Subject(s)
Macrophages , Tumor Necrosis Factor-alpha , Wound Healing
4.
Adv Sci (Weinh) ; 11(4): e2304987, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991133

ABSTRACT

Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfß/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.


Subject(s)
Embryo, Mammalian , Endoderm , Pregnancy , Female , Humans , Endoderm/metabolism , Cell Differentiation , Morphogenesis , Embryonic Stem Cells
5.
J Biol Eng ; 17(1): 77, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098075

ABSTRACT

Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.

6.
Adv Sci (Weinh) ; 10(33): e2303619, 2023 11.
Article in English | MEDLINE | ID: mdl-37802976

ABSTRACT

Extracellular vesicles (EVs) have emerged as a promising source of biomarkers for disease diagnosis. However, current diagnostic methods for EVs present formidable challenges, given the low expression levels of biomarkers carried by EV samples, as well as their complex physical and biological properties. Herein, a highly sensitive double digital assay is developed that allows for the absolute quantification of individual molecules from a single EV. Because the relative abundance of proteins is low for a single EV, tyramide signal amplification (TSA) is integrated to increase the fluorescent signal readout for evaluation. With the integrative microfluidic technology, the technology's ability to compartmentalize single EVs is successfully demonstrated, proving the technology's digital partitioning capacity. Then the device is applied to detect single PD-L1 proteins from single EVs derived from a melanoma cell line and it is discovered that there are ≈2.7 molecules expressed per EV, demonstrating the applicability of the system for profiling important prognostic and diagnostic cancer biomarkers for therapy response, metastatic status, and tumor progression. The ability to accurately quantify protein molecules of rare abundance from individual EVs will shed light on the understanding of EV heterogeneity and discovery of EV subtypes as new biomarkers.


Subject(s)
Biomarkers, Tumor , Extracellular Vesicles , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Proteins/metabolism , Microfluidics , Extracellular Vesicles/metabolism
7.
Mater Today Bio ; 19: 100603, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37009070

ABSTRACT

The culture of lung organoids relies on drops of basement membrane matrices. This comes with limitations, for example, concerning the microscopic monitoring and imaging of the organoids in the drops. Also, the culture technique is not easily compatible with micromanipulations of the organoids. In this study, we investigated the feasibility of the culture of human bronchial organoids in defined x-, y- and z-positions in a polymer film-based microwell array platform. The circular microwells have thin round/U-bottoms. For this, single cells are first precultured in drops of basement membrane extract (BME). After they form cell clusters or premature organoids, the preformed structures are then transferred into the microwells in a solution of 50% BME in medium. There, the structures can be cultured toward differentiated and mature organoids for several weeks. The organoids were characterized by bright-field microscopy for size growth and luminal fusion over time, by scanning electron microscopy for overall morphology, by transmission electron microscopy for the existence of microvilli and cilia, by video microscopy for beating cilia and swirling fluid, by live-cell imaging, by fluorescence microscopy for the expression of cell-specific markers and for proliferating and apoptotic cells, and by ATP measurement for extended cell viability. Finally, we demonstrated the eased micromanipulation of the organoids in the microwells by the example of their microinjection.

8.
EMBO J ; 42(9): e112717, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36912152

ABSTRACT

Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.


Subject(s)
Actin Cytoskeleton , Actins , Actins/metabolism , Actin Cytoskeleton/metabolism
9.
Cell Mol Life Sci ; 80(4): 93, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36929461

ABSTRACT

Multicellular tumor spheroids are rapidly emerging as an improved in vitro model with respect to more traditional 2D culturing. Microwell culturing is a simple and accessible method for generating a large number of uniformly sized spheroids, but commercially available systems often do not enable researchers to perform complete culturing and analysis pipelines and the mechanical properties of their culture environment are not commonly matching those of the target tissue. We herein report a simple method to obtain custom-designed self-built microwell arrays made of polydimethylsiloxane or agarose for uniform 3D cell structure generation. Such materials can provide an environment of tunable mechanical flexibility. We developed protocols to culture a variety of cancer and non-cancer cell lines in such devices and to perform molecular and imaging characterizations of the spheroid growth, viability, and response to pharmacological treatments. Hundreds of tumor spheroids grow (in scaffolded or scaffold-free conditions) at homogeneous rates and can be harvested at will. Microscopy imaging can be performed in situ during or at the end of the culture. Fluorescence (confocal) microscopy can be performed after in situ staining while retaining the geographic arrangement of spheroids in the plate wells. This platform can enable statistically robust investigations on cancer biology and screening of drug treatments.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Cell Line , Cell Line, Tumor
10.
Biomaterials ; 294: 122014, 2023 03.
Article in English | MEDLINE | ID: mdl-36709644

ABSTRACT

Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.


Subject(s)
Hepatocytes , Liver Failure, Acute , Mice , Animals , Liver Failure, Acute/therapy , Spheroids, Cellular , Physical Phenomena , Magnetic Phenomena
11.
Methods Mol Biol ; 2584: 29-56, 2023.
Article in English | MEDLINE | ID: mdl-36495444

ABSTRACT

Advancements in single-cell sequencing have revolutionized our understanding of complex biological systems such as the immune system and allowed us to overcome limitations in various disciplines of life science research such as oncology, developmental biology, or neurobiology (Perkel, Nature 595. https://www.nature.com/articles/d41586-021-01994-w , 2021).The BD Rhapsody™ Single-Cell Analysis System enables us to capture multimodal information from thousands of single cells in parallel ("Multiomics") covering mRNA expression levels, protein expression levels, the immune repertoire for T-cell receptors (TCR) and B-cell receptors (BCR), and the identification of antigen-specific T cells and B cells using dCODE Dextramer® (RiO) from Immudex. The system utilizes microwell-based cartridges that allow to capture a broad range of single cells and an imaging device for sample quality control and workflow quality control (including viability and multiplets). The power of Multiomics relies on simultaneously measuring several aspects of single cells, including gene expression and protein abundance, using next generation sequencing (NGS) as a single readout.Here we describe the complete BD Rhapsody™ Single-Cell Analysis System from the sample preparation including different options for the antibody and/or dCODE Dextramer® staining through to the data analysis.For updated protocols, guides, and technical bulletins, please visit the BD Scomix page: https://scomix.bd.com/hc/en-us or the BDB webpage: https://www.bdbiosciences.com/en-eu .


Subject(s)
High-Throughput Nucleotide Sequencing , Single-Cell Analysis , High-Throughput Nucleotide Sequencing/methods , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Workflow
12.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499691

ABSTRACT

The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.


Subject(s)
Intestines , Organoids , Animals , Coculture Techniques , Intestinal Mucosa/pathology , Macrophages , Mammals
13.
Front Endocrinol (Lausanne) ; 13: 1015063, 2022.
Article in English | MEDLINE | ID: mdl-36465665

ABSTRACT

Background: Transplantation of the human pancreatic islets is a promising approach for specific types of diabetes to improve glycemic control. Although effective, there are several issues that limit the clinical expansion of this treatment, including difficulty in maintaining the quality and quantity of isolated human islets prior to transplantation. During the culture, we frequently observe the multiple islets fusing together into large constructs, in which hypoxia-induced cell damage significantly reduces their viability and mass. In this study, we introduce the microwell platform optimized for the human islets to prevent unsolicited fusion, thus maintaining their viability and mass in long-term cultures. Method: Human islets are heterogeneous in size; therefore, two different-sized microwells were prepared in a 35 mm-dish format: 140 µm × 300 µm-microwells for <160 µm-islets and 200 µm × 370 µm-microwells for >160 µm-islets. Human islets (2,000 islet equivalent) were filtered through a 160 µm-mesh to prepare two size categories for subsequent two week-cultures in each microwell dish. Conventional flat-bottomed 35 mm-dishes were used for non-filtered islets (2,000 islet equivalent/2 dishes). Post-cultured islets are collected to combine in each condition (microwells and flat) for the comparisons in viability, islet mass, morphology, function and metabolism. Islets from three donors were independently tested. Results: The microwell platform prevented islet fusion during culture compared to conventional flat bottom dishes, which improved human islet viability and mass. Islet viability and mass on the microwells were well-maintained and comparable to those in pre-culture, while flat bottom dishes significantly reduced islet viability and mass in two weeks. Morphology assessed by histology, insulin-secreting function and metabolism by oxygen consumption did not exhibit the statistical significance among the three different conditions. Conclusion: Microwell-bottomed dishes maintained viability and mass of human islets for two weeks, which is significantly improved when compared to the conventional flat-bottomed dishes.


Subject(s)
Islets of Langerhans , Humans , Insulin , Glycemic Control , Hypoxia , Oxygen Consumption
14.
Cell Mol Bioeng ; 15(6): 587-597, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531862

ABSTRACT

Objective: The chondrogenic response of adipose-derived stem cells (ASCs) is often assessed using 3D micromass protocols that use upwards of hundreds of thousands of cells. Scaling these systems up for high-throughput testing is technically challenging and wasteful given the necessary cell numbers and reagent volumes. However, adopting microscale spheroid cultures for this purpose shows promise. Spheroid systems work with only thousands of cells and microliters of medium. Methods: Molded agarose microwells were fabricated using 2% w/v molten agarose and then equilibrated in medium prior to introducing cells. ASCs were seeded at 50, 500, 5k cells/microwell; 5k, 50k, cells/well plate; and 50k and 250k cells/15 mL centrifuge tube to compare chondrogenic responses across spheroid and micromass sizes. Cells were cultured in control or chondrogenic induction media. ASCs coalesced into spheroids/pellets and were cultured at 37 °C and 5% CO2 for 21 days with media changes every other day. Results: All culture conditions supported growth of ASCs and formation of viable cell spheroids/micromasses. More robust growth was observed in chondrogenic conditions. Sulfated glycosaminoglycans and collagen II, molecules characteristics of chondrogenesis, were prevalent in both 5000-cell spheroids and 250,000-cell micromasses. Deposition of collagen I, characteristic of fibrocartilage, was more prevalent in the large micromasses than small spheroids. Conclusions: Chondrogenic differentiation was consistently induced using high-throughput spheroid formats, particularly when seeding at cell densities of 5000 cells/spheroid. This opens possibilities for highly arrayed experiments investigating tissue repair and remodeling during or after exposure to drugs, toxins, or other chemicals. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00746-8.

15.
Adv Healthc Mater ; 11(18): e2200863, 2022 09.
Article in English | MEDLINE | ID: mdl-35841538

ABSTRACT

For high-throughput anti-cancer drug screening, microwell arrays may serve as an effective tool to generate uniform and scalable tumor spheroids. However, microwell arrays are commonly anchored in non-oxygen-permeable culture plates, leading to limited oxygen supply for avascular spheroids. Herein, a polydimethylsiloxane (PDMS)-based oxygen-permeable microwell device is introduced for generating highly viable and functional hepatocellular carcinoma (HCC) spheroids. The PDMS sheets at the bottom of the microwell device provide a high flux of oxygen like in vivo neighboring hepatic sinusoids. Owing to the better oxygen supply, the generated HepG2 spheroids are larger in size and exhibit higher viability and proliferation with less cell apoptosis and necrosis. These spheroids also exhibit lower levels of anaerobic cellular respiration and express higher levels of liver-related functions. In anti-cancer drug testing, spheroids cultured in PDMS plates show a significantly stronger resistance against doxorubicin because of the stronger stem-cell and multidrug resistance phenotype. Moreover, higher expression of vascular endothelial growth factor-A produces a stronger angiogenesis capability of the spheroids. Overall, compared to the spheroids cultured in conventional non-oxygen-permeable plates, these spheroids can be used as a more favorable model for early-stage HCCs and be applied in high-throughput anti-cancer drug screening.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Culture Techniques , Dimethylpolysiloxanes , Doxorubicin/pharmacology , Humans , Liver Neoplasms/drug therapy , Oxygen/metabolism , Spheroids, Cellular/metabolism , Vascular Endothelial Growth Factor A
16.
Cytometry A ; 101(12): 1057-1067, 2022 12.
Article in English | MEDLINE | ID: mdl-35698878

ABSTRACT

Cell loss during detection and isolation of circulating tumor cells (CTCs) is a challenge especially when label-free pre-enrichment technologies are used without the aid of magnetic particles. Although microfluidic systems can remove the majority of "contaminating" white blood cells (WBCs), their remaining numbers are still impeding single CTC isolation, thus making additional separation steps needed. This study aimed to develop a workflow from blood-to-single CTC for complex cell suspensions by testing two microwell formats. In the first step, different cell lines were used to compare the performances of Sievewell™ 370 K (TOK, Japan) and CellCelector™ Nanowell U25 (ALS Automated Lab Solutions, Germany) slides for cell labelling and single-cell micromanipulation. Confounding levels of auto-fluorescence inherent to different plastic materials used to cast the microwells, staining recovery rates, and cell isolation rates were determined. In the second step, three different blood preservation tubes were tested for RNA analysis. Lastly, the established workflow was applied to isolate CTCs from peripheral blood samples obtained from metastasized breast cancer (mBC) patients for single-cell DNA and RNA analysis. The detection of CTCs in Sievewell slides profit from better signal-to-noise ratios in the fluorescence channels mainly used for CTC detection. In addition, due to its design, Sievewell supports direct in situ CTC labelling, which minimizes cell loss and leads to single-cell recovery rates after staining of approx. 94%. Detection of PIK3CA mutations in single CTCs verified the applicability of the workflow for the analysis of genomic DNA of CTCs. Furthermore, combined with blood preservation up to 48 h at room temperature in LBguard tubes, panel RT-PCR transcript analysis was successful for single cell line cells and CTCs, respectively. The combined use of Sievewell microwell slides and CellCelector™ automated micromanipulation system improves single CTC detection, labelling and isolation from complex cell suspensions. This approach is especially valuable when samples of high cellular content are processed.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/pathology , Cell Separation , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Microfluidics , RNA , Cell Line, Tumor
17.
Small ; 18(29): e2202112, 2022 07.
Article in English | MEDLINE | ID: mdl-35754160

ABSTRACT

In biomaterials R&D, conventional monolayer cell culture on flat/planar material samples, such as films, is still commonly employed at early stages of the assessment of interactions of cells with candidate materials considered for a biomedical application. In this feasibility study, an approach for the assessment of 3D cell-material interactions through dispersed coaggregation of microparticles from biomaterials into tissue spheroids is presented. Biomaterial microparticles can be created comparatively quickly and easily, allow the miniaturization of the assessment platform, and enable an unhindered remodeling of the dynamic cell-biomaterial system at any time. The aggregation of the microsized biomaterials and the cells is supported by low-attachment round-bottom microwells from thin polymer films arranged in densely packed arrays. The study is conducted by the example of MG63 osteoblast-like and human mesenchymal stem/stromal cells, and a small library of model microbiomaterials related to bone repair and regeneration. For the proof of concept, example interactions including cell adhesion to the material, the hybrid spheroids' morphology, size, and shape, material-associated cell death, cell metabolic activity, cell proliferation, and (osteogenic) differentiation are investigated. The cells in the spheroids are shown to respond to differences in the microbiomaterials' properties, their amounts, and the duration of interaction with them.


Subject(s)
Biocompatible Materials , Mesenchymal Stem Cells , Biocompatible Materials/metabolism , Cell Culture Techniques/methods , Humans , Osteogenesis/physiology , Spheroids, Cellular , Tissue Engineering/methods
18.
Onco Targets Ther ; 15: 683-697, 2022.
Article in English | MEDLINE | ID: mdl-35747403

ABSTRACT

Purpose: B-cell non-Hodgkin lymphomas (B-NHLs) are the most common lymphoproliferative malignancy. Despite targeted therapies, the bone marrow involvement remains a challenge in treating aggressive B-NHLs, partly due to the protective interactions of lymphoma cells with mesenchymal stromal cells (MSCs). However, data elucidating the relationship between MSCs and B-NHLs are limited and inconclusive due to the lack of reproducible in vitro three-dimensional (3D) models. Here, we developed and described a size-controlled and stable 3D hybrid spheroids of Ri-1 (diffuse large B-cell lymphoma, DLBCL) and RAJI (Burkitt lymphoma, BL) cells with HS-5 fibroblasts to facilitate research on the crosstalk between B-NHL cells and MSCs. Materials and Methods: We applied the commercially available agarose hydrogel microwells for a fast, low-cost, and reproducible hybrid lymphoma/stromal spheroids formation. Standard histological automated procedures were used for formalin fixation and paraffin embedding (FFPE) of 3D models to produce good quality slides for histopathology and immunohistochemical staining. Next, we tested the effect of the anti-cancer drugs: doxorubicin (DOX) and ibrutinib (IBR) on mono-cultured and co-cultured B-NHLs with the use of alamarBlue and live/dead cell fluorescence based assays to confirm their relevancy for drug testing studies. Results: We optimized the conditions for B-NHLs spheroid formation in both: a cell line-specific and application-specific manner. Lymphoma cells aggregate into stable spheroids when co-cultured with stromal cells, of which internal architecture was driven by self-organization. Furthermore, we revealed that co-culturing of lymphoma cells with stromal cells significantly reduced IBR-induced apoptosis compared to the 3D mono-culture. Conclusion: This article provides details for generating 3D B-NHL spheroids for the studies on the lymphoma- stromal cells. This approach makes it suitable to assess in a relevant in vitro model the activity of new therapeutic agents in B-NHLs.

19.
Small Methods ; 6(7): e2200341, 2022 07.
Article in English | MEDLINE | ID: mdl-35521945

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a powerful technology for revealing the heterogeneity of cellular states. However, existing scRNA-seq platforms that utilize bead-based technologies suffer from a large number of empty microreactors and a low cell/bead capture efficiency. Here, Well-paired-seq is presented, which consists of thousands of size exclusion and quasi-static hydrodynamic dual wells to address these limitations. The size-exclusion principle allows one cell and one bead to be trapped in the bottom well (cell-capture-well) and the top well (bead-capture-well), respectively, while the quasi-static hydrodynamic principle ensures that the trapped cells are difficult to escape from cell-capture-wells, achieving cumulative capture of cells and effective buffer exchange. By the integration of quasi-static hydrodynamic and size-exclusion principles, the dual wells ensure single cells/beads pairing with high density, achieving excellent efficiency of cell capture (≈91%), cell/bead pairing (≈82%), and cell-free RNA removal. The high utilization of microreactors and single cells/beads enable to achieve a high throughput (≈105 cells) with low collision rates. The technical performance of Well-paired-seq is demonstrated by collecting transcriptome data from around 200 000 cells across 21 samples, successfully revealing the heterogeneity of single cells and showing the wide applicability of Well-paired-seq for basic and clinical research.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , High-Throughput Nucleotide Sequencing , Hydrodynamics , RNA-Seq , Sequence Analysis, RNA
20.
Biosensors (Basel) ; 12(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35200319

ABSTRACT

Many cellular analytical technologies measure only the average response from a cell population with an assumption that a clonal population is homogenous. The ensemble measurement often masks the difference among individual cells that can lead to misinterpretation. The advent of microfluidic technology has revolutionized single-cell analysis through precise manipulation of liquid and compartmentalizing single cells in small volumes (pico- to nano-liter). Due to its advantages from miniaturization, microfluidic systems offer an array of capabilities to study genomics, transcriptomics, and proteomics of a large number of individual cells. In this regard, microfluidic systems have emerged as a powerful technology to uncover cellular heterogeneity and expand the depth and breadth of single-cell analysis. This review will focus on recent developments of three microfluidic compartmentalization platforms (microvalve, microwell, and microdroplets) that target single-cell analysis spanning from proteomics to genomics. We also compare and contrast these three microfluidic platforms and discuss their respective advantages and disadvantages in single-cell analysis.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Single-Cell Analysis/methods , Technology
SELECTION OF CITATIONS
SEARCH DETAIL