Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Genome Med ; 14(1): 69, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35761418

ABSTRACT

BACKGROUND: Alzheimer disease (AD) is a common complex disorder with a high genetic component. Loss-of-function (LoF) SORL1 variants are one of the strongest AD genetic risk factors. Estimating their age-related penetrance is essential before putative use for genetic counseling or preventive trials. However, relative rarity and co-occurrence with the main AD risk factor, APOE-ε4, make such estimations difficult. METHODS: We proposed to estimate the age-related penetrance of SORL1-LoF variants through a survival framework by estimating the conditional instantaneous risk combining (i) a baseline for non-carriers of SORL1-LoF variants, stratified by APOE-ε4, derived from the Rotterdam study (N = 12,255), and (ii) an age-dependent proportional hazard effect for SORL1-LoF variants estimated from 27 extended pedigrees (including 307 relatives ≥ 40 years old, 45 of them having genotyping information) recruited from the French reference center for young Alzheimer patients. We embedded this model into an expectation-maximization algorithm to accommodate for missing genotypes. To correct for ascertainment bias, proband phenotypes were omitted. Then, we assessed if our penetrance curves were concordant with age distributions of APOE-ε4-stratified SORL1-LoF variant carriers detected among sequencing data of 13,007 cases and 10,182 controls from European and American case-control study consortia. RESULTS: SORL1-LoF variants penetrance curves reached 100% (95% confidence interval [99-100%]) by age 70 among APOE-ε4ε4 carriers only, compared with 56% [40-72%] and 37% [26-51%] in ε4 heterozygous carriers and ε4 non-carriers, respectively. These estimates were fully consistent with observed age distributions of SORL1-LoF variant carriers in case-control study data. CONCLUSIONS: We conclude that SORL1-LoF variants should be interpreted in light of APOE genotypes for future clinical applications.


Subject(s)
Alzheimer Disease , LDL-Receptor Related Proteins , Membrane Transport Proteins , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Case-Control Studies , Genotype , Humans , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Penetrance
2.
Am J Hum Genet ; 102(4): 574-591, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625022

ABSTRACT

In complex-trait mapping, when each subject has multiple measurements of a quantitative trait over time, power for detecting genetic association can be gained by the inclusion of all measurements and not just single time points or averages in the analysis. To increase power and control type 1 error, one should account for dependence among observations for a single individual as well as dependence between observations of related individuals if they are present in the sample. We propose L-GATOR, a retrospective, mixed-effects method for association mapping of longitudinally measured traits in samples with related individuals. L-GATOR allows arbitrary time points for different individuals, incorporates both time-varying and static covariates, and properly addresses various types of dependence. In simulations, we show that L-GATOR outperforms existing prospective methods in terms of both type 1 error and power when there is phenotype model misspecification or missing data. Compared with the previously proposed longGWAS method, L-GATOR was more than ten times faster for association testing in our simulations and almost 100 times faster for parameter estimation. L-GATOR is applicable to essentially arbitrary combinations of related and unrelated individuals, including small families as well as large, complex pedigrees. We apply the method to data from the Framingham Heart Study to identify association between longitudinal systolic blood pressure measurements and genome-wide SNPs. Of the smallest p values, one-third occur in or near genes that have been previously identified as associated with pulse pressure (such as PIK3CG) and systolic and diastolic blood pressure (such as C10orf107), showing that L-GATOR is able to prioritize relevant loci in a genome screen.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci/genetics , Software , Blood Pressure/genetics , Cohort Studies , Female , Humans , Male , Models, Genetic , Phenotype , Systole/genetics
3.
Front Genet ; 7: 34, 2016.
Article in English | MEDLINE | ID: mdl-27047537

ABSTRACT

Most currently available family based association tests are designed to account only for nuclear families with complete genotypes for parents as well as offspring. Due to the availability of increasingly less expensive generation of whole genome sequencing information, genetic studies are able to collect data for more families and from large family cohorts with the goal of improving statistical power. However, due to missing genotypes, many families are not included in the family based association tests, negating the benefits of large scale sequencing data. Here, we present the CIFBAT method to use incomplete families in Family Based Association Test (FBAT) to evaluate robustness against missing data. CIFBAT uses quantile intervals of the FBAT statistic by randomly choosing valid completions of incomplete family genotypes based on Mendelian inheritance rules. By considering all valid completions equally likely and computing quantile intervals over many randomized iterations, CIFBAT avoids assumption of a homogeneous population structure or any particular missingness pattern in the data. Using simulated data, we show that the quantile intervals computed by CIFBAT are useful in validating robustness of the FBAT statistic against missing data and in identifying genomic markers with higher precision. We also propose a novel set of candidate genomic markers for uterine related abnormalities from analysis of familial whole genome sequences, and provide validation for a previously established set of candidate markers for Type 1 diabetes. We have provided a software package that incorporates TDT, robustTDT, FBAT, and CIFBAT. The data format proposed for the software uses half the memory space that the standard FBAT format (PED) files use, making it efficient for large scale genome wide association studies.

4.
Genet Epidemiol ; 38(4): 325-44, 2014 May.
Article in English | MEDLINE | ID: mdl-24723341

ABSTRACT

Monte Carlo permutation tests can be formally constructed by choosing a set of permutations of individual indices and a real-valued test statistic measuring the association between genotypes and affection status. In this paper, we develop a rigorous theoretical framework for verifying the validity of these tests when there are missing genotypes. We begin by specifying a nonparametric probability model for the observed genotype data in a genetic case-control study with unrelated subjects. Under this model and some minimal assumptions about the test statistic, we establish that the resulting Monte Carlo permutation test is exact level α if (1) the chosen set of permutations of individual indices is a group under composition and (2) the distribution of the observed genotype score matrix under the null hypothesis does not change if the assignment of individuals to rows is shuffled according to an arbitrary permutation in this set. We apply these conditions to show that frequently used Monte Carlo permutation tests based on the set of all permutations of individual indices are guaranteed to be exact level α only for missing data processes satisfying a rather restrictive additional assumption. However, if the missing data process depends on covariates that are all identified and recorded, we also show that Monte Carlo permutation tests based on the set of permutations within strata of individuals with identical covariate values are exact level α. Our theoretical results are verified and supplemented by simulations for a variety of missing data processes and test statistics.


Subject(s)
Genotype , Models, Genetic , Monte Carlo Method , Case-Control Studies , Haplotypes/genetics , Humans , Probability , Reproducibility of Results
5.
Stat Med ; 33(4): 618-38, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-23946183

ABSTRACT

Lynch Syndrome (LS) families harbor mutated mismatch repair genes,which predispose them to specific types of cancer. Because individuals within LS families can experience multiple cancers over their lifetime, we developed a progressive three-state model to estimate the disease risk from a healthy (state 0) to a first cancer (state 1) and then to a second cancer (state 2). Ascertainment correction of the likelihood was made to adjust for complex sampling designs with carrier probabilities for family members with missing genotype information estimated using their family's observed genotype and phenotype information in a one-step expectation-maximization algorithm. A sandwich variance estimator was employed to overcome possible model misspecification. The main objective of this paper is to estimate the disease risk (penetrance) for age at a second cancer after someone has experienced a first cancer that is also associated with a mutated gene. Simulation study results indicate that our approach generally provides unbiased risk estimates and low root mean squared errors across different family study designs, proportions of missing genotypes, and risk heterogeneities. An application to 12 large LS families from Newfoundland demonstrates that the risk for a second cancer was substantial and that the age at a first colorectal cancer significantly impacted the age at any LS subsequent cancer. This study provides new insights for developing more effective management of mutation carriers in LS families by providing more accurate multiple cancer risk estimates.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Heterozygote , Models, Genetic , Mutation/genetics , Penetrance , Proportional Hazards Models , Age Factors , Algorithms , Computer Simulation , Female , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Newfoundland and Labrador , Risk Assessment/methods
SELECTION OF CITATIONS
SEARCH DETAIL