Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters











Publication year range
1.
J Physiol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058663

ABSTRACT

Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine ß-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.

2.
J Biol Chem ; 300(8): 107519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950860

ABSTRACT

The mitochondrial ribosome (mitoribosome) is responsible for the synthesis of key oxidative phosphorylation subunits encoded by the mitochondrial genome. Defects in mitoribosomal function therefore can have serious consequences for the bioenergetic capacity of the cell. Mutation of the conserved mitoribosomal mL44 protein has been directly linked to childhood cardiomyopathy and progressive neurophysiology issues. To further explore the functional significance of the mL44 protein in supporting mitochondrial protein synthesis, we have performed a mutagenesis study of the yeast mL44 homolog, the MrpL3/mL44 protein. We specifically investigated the conserved hydrophobic pocket region of the MrpL3/mL44 protein, where the known disease-related residue in the human mL44 protein (L156R) is located. While our findings identify a number of residues in this region critical for MrpL3/mL44's ability to support the assembly of translationally active mitoribosomes, the introduction of the disease-related mutation into the equivalent position in the yeast protein (residue A186) was found to not have a major impact on function. The human and yeast mL44 proteins share many similarities in sequence and structure; however results presented here indicate that these two proteins have diverged somewhat in evolution. Finally, we observed that mutation of the MrpL3/mL44 does not impact the translation of all mitochondrial encoded proteins equally, suggesting the mitochondrial translation system may exhibit a transcript hierarchy and prioritization.


Subject(s)
Mitochondrial Proteins , Mitochondrial Ribosomes , Protein Biosynthesis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Humans , Mitochondrial Ribosomes/metabolism , Mitochondrial Ribosomes/chemistry , Hydrophobic and Hydrophilic Interactions , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/chemistry , Mitochondria/metabolism , Mitochondria/genetics
3.
Front Cell Dev Biol ; 12: 1410245, 2024.
Article in English | MEDLINE | ID: mdl-38855161

ABSTRACT

Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.

4.
FEBS Open Bio ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849194

ABSTRACT

Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.

5.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928090

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is involved in renal physiology and is synthesized by nicotinamide mononucleotide adenylyltransferase (NMNAT). NMNAT exists as three isoforms, namely, NMNAT1, NMNAT2, and NMNAT3, encoded by Nmnat1, Nmnat2, and Nmnat3, respectively. In diabetic nephropathy (DN), NAD levels decrease, aggravating renal fibrosis. Conversely, sodium-glucose cotransporter-2 inhibitors increase NAD levels, mitigating renal fibrosis. In this regard, renal NAD synthesis has recently gained attention. However, the renal role of Nmnat in DN remains uncertain. Therefore, we investigated the role of Nmnat by establishing genetically engineered mice. Among the three isoforms, NMNAT1 levels were markedly reduced in the proximal tubules (PTs) of db/db mice. We examined the phenotypic changes in PT-specific Nmnat1 conditional knockout (CKO) mice. In CKO mice, Nmnat1 expression in PTs was downregulated when the tubules exhibited albuminuria, peritubular type IV collagen deposition, and mitochondrial ribosome (mitoribosome) excess. In CKO mice, Nmnat1 deficiency-induced mitoribosome excess hindered mitoribosomal translation of mitochondrial inner membrane-associated oxidative phosphorylation complex I (CI), CIII, CIV, and CV proteins and mitoribosomal dysfunction. Furthermore, the expression of hypermethylated in cancer 1, a transcription repressor, was downregulated in CKO mice, causing mitoribosome excess. Nmnat1 overexpression preserved mitoribosomal function, suggesting its protective role in DN.


Subject(s)
Diabetic Nephropathies , Mice, Knockout , Nicotinamide-Nucleotide Adenylyltransferase , Animals , Male , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice, Inbred C57BL , Mitochondria/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics
6.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585782

ABSTRACT

Mitochondrial dysfunction has been linked to both idiopathic and familial forms of Parkinson's disease (PD). We have previously identified RCC1-like (RCC1L) as a protein of the inner mitochondrial membrane important to mitochondrial fusion. Herein, to test whether deficits in RCC1L mitochondrial function might be involved in PD pathology, we have selectively ablated the Rcc1l gene in the dopaminergic (DA) neurons of mice. A PD-like phenotype resulted that includes progressive movement abnormalities, paralleled by progressive degeneration of the nigrostriatal tract. Experimental and control groups were examined at 2, 3-4, and 5-6 months of age. Animals were tested in the open field task to quantify anxiety, exploratory drive, locomotion, and immobility; and in the cylinder test to quantify rearing behavior. Beginning at 3-4 months, both female and male Rcc1l knockout mice show rigid muscles and resting tremor, kyphosis and a growth deficit compared with heterozygous or wild type littermate controls. Rcc1l knockout mice begin showing locomotor impairments at 3-4 months, which progress until 5-6 months of age, at which age the Rcc1l knockout mice die. The progressive motor impairments were associated with progressive and significantly reduced tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta (SNc), and dramatic loss of nigral DA projections in the striatum. Dystrophic spherical mitochondria are apparent in the soma of SNc neurons in Rcc1l knockout mice as early as 1.5-2.5 months of age and become progressively more pronounced until 5-6 months. Together, the results reveal the RCC1L protein to be essential to in vivo mitochondrial function in DA neurons. Further characterization of this mouse model will determine whether it represents a new model for in vivo study of PD, and the putative role of the human RCC1L gene as a risk factor that might increase PD occurrence and severity in humans.

7.
Mitochondrion ; 76: 101881, 2024 May.
Article in English | MEDLINE | ID: mdl-38604460

ABSTRACT

DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.


Subject(s)
DEAD-box RNA Helicases , Mitochondrial Ribosomes , Protein Biosynthesis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Mitochondrial Ribosomes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Gene Deletion , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
8.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493895

ABSTRACT

Ribosomes across species contain subsets of zinc finger proteins that play structural roles by binding to rRNA. While the majority of these zinc fingers belong to the C2-C2 type, the large subunit protein L36 in bacteria and mitochondria exhibits an atypical C2-CH motif. To comprehend the contribution of each coordinating residue in S. cerevisiae bL36m to mitoribosome assembly and function, we engineered and characterized strains carrying single and double mutations in the zinc coordinating residues. Our findings reveal that although all four residues markedly influence protein stability, C to A mutations in C66 and/or C69 have a more pronounced effect compared to those at C82 and H88. Importantly, protein stability directly correlates with the assembly and function of the mitoribosome and the growth rate of yeast in respiratory conditions. Mass spectrometry analysis of large subunit particles indicates that strains deleted for bL36m or expressing mutant variants have defective assembly of the L7/L12 stalk base, limiting their functional competence. Furthermore, we employed a synthetic bL36m protein collection, including both wild-type and mutant proteins, to elucidate their ability to bind zinc. Our data indicate that mutations in C82 and, particularly, H88 allow for some zinc binding albeit inefficient or unstable, explaining the residual accumulation and activity in mitochondria of bL36m variants carrying mutations in these residues. In conclusion, stable zinc binding by bL36m is essential for optimal mitoribosome assembly and function. MS data are available via ProteomeXchange with identifierPXD046465.


Subject(s)
Mitochondrial Ribosomes , Saccharomyces cerevisiae , Mitochondrial Ribosomes/chemistry , Mitochondrial Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zinc Fingers/genetics , Ribosome Subunits, Large/genetics , Zinc/metabolism
9.
Dev Cell ; 59(8): 1043-1057.e8, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38508182

ABSTRACT

Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
10.
Cell Rep ; 43(4): 114018, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551959

ABSTRACT

Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.


Subject(s)
Mitochondria , Mitochondrial Proteins , Protein Aggregates , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Stress, Physiological , Humans , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/metabolism , Proteostasis , Proteome/metabolism , Proteotoxic Stress
11.
Mol Cell Proteomics ; 23(4): 100746, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447791

ABSTRACT

Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.


Subject(s)
Huntington Disease , Mitochondria , Protein Biosynthesis , Ribosome Profiling , Humans , Cell Line , Corpus Striatum/metabolism , Corpus Striatum/pathology , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Mass Spectrometry , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics
12.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38199006

ABSTRACT

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Subject(s)
Friedreich Ataxia , Iron-Sulfur Proteins , Humans , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Cryoelectron Microscopy , Frataxin , Protein Biosynthesis , Mitochondria/genetics , Mitochondria/metabolism , Friedreich Ataxia/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
13.
Trends Plant Sci ; 29(3): 269-271, 2024 03.
Article in English | MEDLINE | ID: mdl-38016866

ABSTRACT

Mitochondrial translation differs significantly from that conducted in bacteria and plastids. Recent research conducted by Tran and colleagues has unveiled the plant-specific mechanisms of mitochondrial translation initiation. The authors identified two Arabidopsis thaliana (arabidopsis) mTRAN proteins that may bind to the 5' untranslated region (UTR) of mitochondrial mRNAs by recognising newly discovered A/U-rich motifs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mitochondria/genetics , Mitochondria/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Protein Biosynthesis/genetics , Arabidopsis Proteins/metabolism , Mitochondrial Proteins/metabolism
14.
IUBMB Life ; 76(7): 397-419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38117001

ABSTRACT

Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.


Subject(s)
Gene Expression Regulation, Fungal , Mitochondria , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Humans , Genes, Mitochondrial/genetics
15.
Cell Mol Life Sci ; 80(12): 361, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971521

ABSTRACT

Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.


Subject(s)
Mitochondria , Mitochondrial Membranes , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Ribosomes/chemistry , Mitochondrial Ribosomes/metabolism , Protein Biosynthesis , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
16.
EMBO Rep ; 24(12): e57228, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37818824

ABSTRACT

Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations is redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. One method to rescue this cell death vulnerability is the inhibition of mitochondrial translation using tetracyclines. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that tetracyclines inhibit the mitochondrial ribosome and promote survival through suppression of endoplasmic reticulum (ER) stress. Tetracyclines increase mitochondrial levels of the mitoribosome quality control factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) and promote its recruitment to the mitoribosome large subunit, where MALSU1 is necessary for tetracycline-induced survival and suppression of ER stress. Glucose starvation induces ER stress to activate the unfolded protein response and IRE1α-mediated cell death that is inhibited by tetracyclines. These studies establish a new interorganelle communication whereby inhibition of the mitoribosome signals to the ER to promote survival, implicating basic mechanisms of cell survival and treatment of mitochondrial diseases.


Subject(s)
Mitochondrial Diseases , Mitochondrial Ribosomes , Humans , Mitochondrial Ribosomes/metabolism , Mitochondrial Ribosomes/pathology , Protein Serine-Threonine Kinases/metabolism , Cell Survival , Tetracyclines/pharmacology , Tetracyclines/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoplasmic Reticulum Stress/genetics , Mitochondrial Diseases/genetics
17.
Life (Basel) ; 13(9)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37763267

ABSTRACT

In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.

18.
Cell Rep ; 42(9): 113112, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37703180

ABSTRACT

The protozoan parasite Trypanosoma brucei and its disease-causing relatives are among the few organisms that barely regulate the transcription of protein-coding genes. Yet, alterations in its gene expression are essential to survive in different host environments. Recently, tRNA-derived RNAs have been implicated as regulators of many cellular processes within and beyond translation. Previously, we identified the tRNAThr-3'-half (AGU) as a ribosome-associated non-coding RNA able to enhance global translation. Here we report that the tRNAThr-3'-half is generated upon starvation inside the mitochondria. The tRNAThr-3'-half associates with mitochondrial ribosomes and stimulates translation during stress recovery, positively affecting mitochondrial activity and, consequently, cellular energy production capacity. Our results describe an organelle ribosome-associated ncRNA involved in translation regulation to boost the central hub of energy metabolism as an immediate stress recovery response.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , RNA, Transfer, Thr/metabolism , Ribosomes/metabolism , Protein Biosynthesis , RNA, Transfer/genetics , RNA, Transfer/metabolism
19.
Mol Cell ; 83(19): 3470-3484.e8, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37751741

ABSTRACT

Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.


Subject(s)
Mitochondria , Triage , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Ribosomes/metabolism , Protein Biosynthesis , Oxidative Phosphorylation , Ribosomal Proteins/metabolism
20.
Front Physiol ; 14: 1082953, 2023.
Article in English | MEDLINE | ID: mdl-37457031

ABSTRACT

Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL