Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biom J ; 63(1): 81-104, 2021 01.
Article in English | MEDLINE | ID: mdl-33073871

ABSTRACT

Count data sets are traditionally analyzed using the ordinary Poisson distribution. However, such a model has its applicability limited as it can be somewhat restrictive to handle specific data structures. In this case, it arises the need for obtaining alternative models that accommodate, for example, (a) zero-modification (inflation or deflation at the frequency of zeros), (b) overdispersion, and (c) individual heterogeneity arising from clustering or repeated (correlated) measurements made on the same subject. Cases (a)-(b) and (b)-(c) are often treated together in the statistical literature with several practical applications, but models supporting all at once are less common. Hence, this paper's primary goal was to jointly address these issues by deriving a mixed-effects regression model based on the hurdle version of the Poisson-Lindley distribution. In this framework, the zero-modification is incorporated by assuming that a binary probability model determines which outcomes are zero-valued, and a zero-truncated process is responsible for generating positive observations. Approximate posterior inferences for the model parameters were obtained from a fully Bayesian approach based on the Adaptive Metropolis algorithm. Intensive Monte Carlo simulation studies were performed to assess the empirical properties of the Bayesian estimators. The proposed model was considered for the analysis of a real data set, and its competitiveness regarding some well-established mixed-effects models for count data was evaluated. A sensitivity analysis to detect observations that may impact parameter estimates was performed based on standard divergence measures. The Bayesian p -value and the randomized quantile residuals were considered for model diagnostics.


Subject(s)
Models, Statistical , Bayes Theorem , Cluster Analysis , Computer Simulation , Monte Carlo Method , Poisson Distribution
SELECTION OF CITATIONS
SEARCH DETAIL