Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Sci Rep ; 14(1): 18088, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103438

ABSTRACT

Earthquake-induced rock landslides in the eastern mountains of the Tibetan Plateau, especially landslides with weak interlayers pose a significant threat to major construction projects. Prestressed anchor cable is one of the main reinforcement methods of rock slopes. This paper combines shaking table model tests and numerical simulation to study the reinforcement effect and dynamic response characteristics of prestressed anchor cables applied to rock slopes with weak interlayers under strong earthquakes. The research results show that prestressed anchor cables can effectively reinforce slopes with weak interlayers. A small cable inclination, a small spacing and a high prestress are recommended in the seismic reinforcement design of prestressed anchor cable. In addition, the characteristics of slope progressive damage and prestress loss under the earthquake are found by the shaking table test. The results have been applied in hazard prevention and control of rock slopes on the Chengdu-Lanzhou Railway at the eastern Qinghai-Tibet Plateau.

2.
Sci Rep ; 14(1): 15795, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982275

ABSTRACT

To address the design challenge of the rock-socketed piles posed by the void located below the pile tip, the physical laboratory model tests were designed and performed to simulate rock socketed piles using similar materials. The study investigates the behavior of the single pile under axial loading with the void located at varying distances from the pile tip. Through multi-level load tests, the variations of unit pile side friction, pile tip resistance, pile axial force and pile settlement are obtained for different positions of the void from the pile tip, as well as after grouting. Its comparison to the rock-socketed pile without void is performed as a reference to quantify the reduction in its bearing capacity. The results are presented in the form of graphs for different void positions and its grouting shows the influence on pile bearing capacity and emphasizes the importance of its detailed cautious investigation and introduction in the analysis. The 2D finite element modeling of the model pile-the void based on ABAQUS is performed to further investigate the influence of the void below pile tip on the bearing capacity of model pile, applying the Mohr Coulomb model as the constitutive model of rock mass behavior. The critical distance of the void below the pile tip is determined.

3.
Sci Rep ; 14(1): 15614, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971871

ABSTRACT

The extraction of underground coal resources induces the fracture and movement of overlying strata, leading to geological hazards such as surface deformation, cracks, and even subsidence. Utilizing the analogous hyperbola model of overlying strata movement, we conducted a mechanical analysis to examine the asymmetric fracture mechanism resulting from coal seam mining in thick loose strata. An asymmetric analogous hyperbola model was established by introducing distinct virtual half-axis lengths (b). The thickness impact of thick loose layers (H) and bedrock layer (h) on the asymmetric movement of overlying rock during mining was also discussed. Similarity model tests were conducted to research the migration characteristics and surface subsidence patterns of overburdened rock and thick loose layers at different mining stages and validate the hypothesis of asymmetric overburdened rock migration. Additionally, the discrete element numerical model for thick and loose layers mining was established by using UDEC and discussed the asymmetric analogous hyperbola behaviour of overburden movement and surface subsidence. The comparison results show that the established asymmetric hyperbolic model can effectively predict the movement law of overlying strata and surface subsidence characteristics. Therefore, the proposed model can provide valuable theoretical support for predicting the movement patterns of overburden under thick loose layers and mitigating surface subsidence disasters.

4.
Sci Rep ; 14(1): 17717, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085627

ABSTRACT

The evolution and mechanism of ground collapse caused by underground water pipeline leakage have become increasingly significant as more urban areas experience collapses. Based on the principle of similarity, and considering the engineering context of road collapses in Anqing City, Anhui Province, this study designed a 3 m × 2 m × 2 m rupture-collapse model test device. Digital Image Correlation (DIC) technology was employed to investigate the erosion process and collapse mechanisms caused by underground pipeline leakage. The results indicate that groundwater seepage provides the driving force for collapses, combined with the migration space provided by defects, collectively triggering the collapses. When groundwater seepage is minimal, the cohesive forces between soil particles maintain soil stability. As groundwater seepage increases, the soil particle framework is eroded, leading to soil structure destabilization and collapse initiation. The depth of collapse significantly influences stress evolution: stress evolution intensity beneath and above the collapse pit is positively correlated with the distance from the collapse pit bottom, but negatively correlated with the distance from the defect. The research provides insights for the early warning and management of ground collapse.

5.
Sci Rep ; 14(1): 12863, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834766

ABSTRACT

Deep-buried tunnels with weak surrounding rock are frequently encountered issues in traffic engineering. It plays an important role in the excavation process and the project operation. This paper applies the theoretical analysis and laboratory test related to four different conditions in terms of their thickness to determine the mechanical response of deep-buried tunnel lining. Then, the energy dissipative structure theory is employed to explain the experimental results. This paper has made the following achievements: firstly, it is found that the toughness of the secondary lining was found to be often the most important indicator of tunnel safety, with better-toughness linings having higher tensile strength and crack resistance. Secondly, it suggests that the inclusion of steel reinforcement in the concrete lining can effectively improve the secondary lining toughness. Finally, it proves that the more ductile liner had more energy, higher load-carrying capacity, and was better able to maintain the overall stability of the structure.

6.
Sci Prog ; 107(2): 368504241260268, 2024.
Article in English | MEDLINE | ID: mdl-38836302

ABSTRACT

The bearing and deformation characteristics of monopile foundation under the monotonic and cyclic loads are key factors to consider in the design of the transmission tower structure or offshore wind energy converters. The model tests and numerical simulations of monopile foundation under monotonic and cyclic horizontal loads were performed in sand to explore the bearing characteristics and the deformation characteristics of pile. The potentially affected factors including loading height, relative density of soil, displacement amplitude were analyzed. The results show that with the loading height varies from 1D to 4D, the horizontal static bearing capacity of the pile under different the soil relative density decreased by 1.63-1.9 times, and the peak bending moment increased by 22.9%-36.8%. Under the cyclic loads, the peak load on the pile top increased by 31.7%-56.1% for each 1 mm increase in displacement amplitude. The stiffness of soil around pile varies as the number of cycles increases with the development trend of decreases first and then increases gradually. As the horizontal load and cycle number increase, the range of the displacement of soil extends towards the bottom of pile, until it covers the entire lower part of the model.

7.
Sci Rep ; 14(1): 12299, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811744

ABSTRACT

To reduce the local scour around the spur dike, the U-shaped collar is proposed in this study. The influence of the collar's length, width, and porosity on the local scour reduction in clear water is studied by model tests and numerical simulations. Experimental studies show that the collar has a significant effect on reducing the local scour. The location of the maximum scour depth of the spur dike moves downstream. The width of the collar has the greatest impact on the reduction effect among the three selected factors, followed by the porosity and the length. Local scour reduction efficiency of the collar can reach 56.9%. Based on the regression analysis of the range and variety, a formula for predicting the reduction effect around the spur dike is put forward, and the deviation between the values by formula and that in experiments are within ± 4%. The characteristics of the flow field around the spur dike under constant conditions with a collar are studied via numerical simulation. The numerical simulation results show that compared to the case without collar, the flow velocities around the spur dike in cases with permeable collar and solid collar reduced by 45% and 25%, respectively, and the shear stresses reduced by 20% and 28.6%, respectively. The results of this study can provide a reference for local scour reduction using the solid collar or collar made of permeable materials such as gabions.

8.
Sci Rep ; 14(1): 11276, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760411

ABSTRACT

The joint made of cast steel is frequently utilized within a treelike column structure to ensure a smooth transition. It is of great significance in ensuring the overall structural safety, but currently, the mechanical property and bearing capacity of this type of joint cannot be fully understood. This study investigates the load characteristics of three-forked cast steel joints through concrete experiments, finite element analysis, and regression method formula derivation, filling the gap in mechanical properties and calculation formulas of forked cast steel joints. Initially, a comprehensive model of the cast-steel joint, sourced from a practical engineering, underwent vertical load testing. Detailed scrutiny of stress distribution and vertical displacement of the tested joint was conducted based on the experimental outcomes. Subsequently, a finite element model of the tested joint was constructed using SolidWorks and subjected to analysis via ANSYS. The numerical findings were juxtaposed with experimental data and extrapolated to encompass other parametric scenarios. Ultimately, a regression analysis method was employed to derive a calculation formula for the load-carrying capacity of branch-bearing cast-steel joints. The regression analysis method can accurately obtain the load-bearing capacity calculation formula for tree-shaped joint models and can be extended to determine corresponding branch and main pipe dimensions, as well as the deviation angle between branches and the main pipe, under known load conditions. This improves design efficiency and accuracy. Comparative analysis reveals a substantial concurrence among experimental, finite element analysis, and formula-based predictive outcomes. The maximum error between experimental results and those obtained from finite element analysis is 9.02%. The maximum error between the results calculated using the load-bearing capacity formula derived from regression methods and those from finite element analysis is only 1.9%.

9.
Sci Rep ; 14(1): 7991, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580792

ABSTRACT

In sustaining arch locked-segment-type slopes, natural soil arches play a key anti-sliding role in the slope's evolution. In this study, a self-developed model test device was used to simulate the whole process of deformation evolution of sustaining arch locked-segment-type slopes, and the formation of natural sustaining arch and its locking control effect on slope stability were studied. The test results show that the continuous formation and progressive destruction of the sustaining arch were observed. The sustaining arch formed in the second time has the best locking effect, and the anti-sliding force reaches its stress peak point. However, the slope is not in a critically unstable state, instead, the stress is continuously adjusted to form a larger range of soil arch to resist the slope thrust. Consequently, the slope destabilizes until the ultimate shear strength of arch foots is exceeded, at which point the critical arch height of the arch is reached. The critical arch height mechanical model for slope stability analysis was developed based on the soil arching effect and limit equilibrium theory. The applicability of the model was demonstrated by the physical test and Xintan slope data, which can provide some guidance for early warning of landslides.

10.
Sci Rep ; 14(1): 9549, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664453

ABSTRACT

In this research, a directional reduction charging structure was proposed to solve the problems caused by drilling and blasting method such as serious damage to surrounding rocks, working face low contour flatness and serious over-under break of root base c. Drilling and blasting tests, numerical calculations and field applications were designed and performed for the verification of the blasting advantages of charge structure. Test results showed that the peak positive strain along the protection direction of directional protection shaped charge was significantly smaller than that of ordinary charge, where PVC material presented the strongest effect such that the peak positive strain of specimen 1 at measuring point 4 (protection direction) was only 0.27 times that at measuring point 9 (non-protected direction). Numerical simulations indicated shaped jet formation, damage-reduction and charge penetration process and obtained the force law of cement target plate. Experimental results revealed that application of charge in tunnel controlled blasting achieved a clear controlling effect on contour line excavation. Compared with ordinary smooth blasting method, all technical indicators of the developed method were improved such that half hole mark rate was increased by about 33% and the amount of over-under break was decreased by about two times. Research results are of certain significance for the stability of surrounding reserved rocks and formation of roadway in blasting engineering and the developed method was found to be applicable to mining, shaft excavation and other projects.

11.
Materials (Basel) ; 17(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38541424

ABSTRACT

Microbially induced calcite precipitation (MICP) is an emerging solidification method characterized by high economic efficiency, environmental friendliness, and durability. This study validated the reliability of the MICP sand solidification method by conducting a small-scale wind tunnel model test using aeolian sand solidified by MICP and analyzing the effects of wind velocity (7 m/s, 10 m/s, and 13 m/s), deflation angle (0°, 15°, 30°, and 45°), wind erosion cycle (1, 3, and 5), and other related factors on the mass loss rate of solidified aeolian sand. The microstructure of aeolian sand was constructed by performing mesoscopic and microscopic testing based on X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). According to the test results, the mass loss rate of solidified aeolian sand gradually increases with the increase in wind velocity, deflation angle, and wind erosion cycle. When the wind velocity was 13 m/s, the mass loss rate of the aeolian sand was only 63.6%, indicating that aeolian sand has excellent wind erosion resistance. CaCO3 crystals generated by MICP were mostly distributed on sand particle surfaces, in sand particle pores, and between sand particles to realize the covering, filling, and cementing effects.

12.
Sci Rep ; 14(1): 7394, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548836

ABSTRACT

For shaped charge blasting projects in mining, civil engineering, and similar fields, it is proposed to modify the charge structure by combining slotted tubes and shaped charge liners to obtain a new type of charge structure. This aims to achieve directional rock breaking through the focused action of the shaped charge. The influence of different slotted pipe materials on the directional rock-breaking effect of concentrated energy using a new charge structure is explored through theoretical analysis combined with model test study, high-speed camera, stress-strain gauge, and other equipment. A comparison is made between slotted pipes made of aluminum, kraft paper, and PVC, with the cutting width of 2 mm. Based on the characteristics of the cracks formed after blasting, the new charge structure made of aluminum slotted pipe produces a penetrating crack that is almost consistent with the pre-cracking direction. Based on the corresponding characteristics of successively released blasting energy, the guiding and convergence effect of the new charge structure made of aluminum slotted pipe on the explosion energy is greater than that of the new charge structure made of the other two types of slotted pipe material. According to the strain data measured after blasting, the peak arrival time of the strain peak in the direction of the slotted pipe on one side of the shaped hood is shorter than that in the other two directions, and the peak strain is greater than that in the other two directions while having a better energy gathering effect. Based on the findings, the new charge structure with directional energy concentration has a damage reduction effect. Furthermore, the material of aluminum slotted pipe is found to be better than PVC slotted pipe, whereas the material of PVC slotted pipe is better than kraft paper slotted pipe in achieving directional rock breaking.

13.
Sensors (Basel) ; 24(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38339510

ABSTRACT

In this study, we propose a meticulous method for the three-dimensional modeling of slope models using structured light, a swift and cost-effective technique. Our approach aims to enhance the understanding of slope behavior during landslides by capturing and analyzing surface deformations. The methodology involves the initial capture of images at various stages of landslides, followed by the application of the structured light method for precise three-dimensional reconstructions at each stage. The system's low-cost nature and operational convenience make it accessible for widespread use. Subsequently, a comparative analysis is conducted to identify regions susceptible to severe landslide disasters, providing valuable insights for risk assessment. Our findings underscore the efficacy of this system in facilitating a qualitative analysis of landslide-prone areas, offering a swift and cost-efficient solution for the three-dimensional reconstruction of slope models.

14.
Materials (Basel) ; 17(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38255565

ABSTRACT

To study the applicability of the new geopolymer grouting material for super-long and large-diameter post-grouting bored piles in silty fine sand geology, this paper compares the bearing capacity of two grouting materials, geopolymer and normal Portland cement, and different grouting volume pile side-distributed grouting piles in silty fine sand based on field model tests are analyzed through the diffusion forms of the two materials in silty fine sand through the morphology of the grouted body after excavation. The results show that the ultimate bearing capacities of P0 (ungrouted pile), P1 (8 kg cement grouted pile), P2 (6 kg geopolymer-grouted pile), P3 (8 kg geopolymer-grouted pile) and P4 (10 kg geopolymer-grouted pile) are 5400 N, 8820 N, 9450 N, 11,700 N and 12,600 N, respectively, and that the ultimate bearing capacity of the grouted pile is improved compared with that of the ungrouted pile since, under the same grouting amount, the maximum bearing capacity of the pile using geopolymer grouting is increased by 133% compared with that of the pile with cement grouting. This further verifies the applicability of the geopolymer grouting material for the post-grouting of the pile foundation in silty fine sand. Under the action of the ultimate load, the pile side friction resistance of P1, P2, P3 and P4 is increased by 200%, 218%, 284% and 319% compared with that of P0. In addition, the excavation results show that the geopolymer post-grouting pile forms the ellipsoidal consolidation body at the pile side grouting location, which mainly comprises extrusion diffusion with a small amount of infiltration diffusion, and the cement grouting pile forms a sheet-like consolidation body at the lower grouting location, which primarily comprises split diffusion. This study can provide a reference basis for the theoretical and engineering application of post-grouting piles using geopolymers.

15.
Environ Sci Pollut Res Int ; 31(5): 6874-6890, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38153580

ABSTRACT

There is a high risk of dam breakage in tailing reservoirs under extreme conditions. Once a dam breaks, it causes serious pollution to the surrounding ecological environment. To explore the effects of a tailings dam break under extreme conditions (flood conditions, drainage failure, flood discharge failure, and dam saturation), the mechanism underlying an overtopping dam break must be accurately understood. In this study, fine-grained tailings and perlite were selected to create composite model sand, and a prototype tailing reservoir was restored at a scale of 1:200. Furthermore, the dam-break process and results were analyzed and summarized by performing an overtopping dam-break test on the tailing reservoir under extreme conditions. The results show that the tailing discharge process has a high sand content, strong sand-carrying capacity, and high speed. The amount of model sand discharge accounted for 15.13% of the total storage capacity, and the amount of tailings deposition in the downstream area accounted for 95.21% of the discharge, which were both greater than the results of similar physical model tests and actual tailings dam failure accidents. An overtopping dam break in a tailing pond is a progressively destructive process. The dam break mechanism can be divided into two stages: prior breach penetration and subsequent breach horizontal expansion. In the process of a tailings dam break, the motion state of the tailings particles is transformed between the bed-load and suspended-load movement states. These results can provide important reference for the reinforcement of mine management and the formulation of preventive measures, which are essential to improving the safety of tailings reservoirs and protecting the ecological environment.


Subject(s)
Environmental Pollution , Sand , Floods , Accidents , Conservation of Natural Resources
16.
J Med Internet Res ; 25: e44119, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38100181

ABSTRACT

BACKGROUND: Convolutional neural networks (CNNs) have produced state-of-the-art results in meningioma segmentation on magnetic resonance imaging (MRI). However, images obtained from different institutions, protocols, or scanners may show significant domain shift, leading to performance degradation and challenging model deployment in real clinical scenarios. OBJECTIVE: This research aims to investigate the realistic performance of a well-trained meningioma segmentation model when deployed across different health care centers and verify the methods to enhance its generalization. METHODS: This study was performed in four centers. A total of 606 patients with 606 MRIs were enrolled between January 2015 and December 2021. Manual segmentations, determined through consensus readings by neuroradiologists, were used as the ground truth mask. The model was previously trained using a standard supervised CNN called Deeplab V3+ and was deployed and tested separately in four health care centers. To determine the appropriate approach to mitigating the observed performance degradation, two methods were used: unsupervised domain adaptation and supervised retraining. RESULTS: The trained model showed a state-of-the-art performance in tumor segmentation in two health care institutions, with a Dice ratio of 0.887 (SD 0.108, 95% CI 0.903-0.925) in center A and a Dice ratio of 0.874 (SD 0.800, 95% CI 0.854-0.894) in center B. Whereas in the other health care institutions, the performance declined, with Dice ratios of 0.631 (SD 0.157, 95% CI 0.556-0.707) in center C and 0.649 (SD 0.187, 95% CI 0.566-0.732) in center D, as they obtained the MRI using different scanning protocols. The unsupervised domain adaptation showed a significant improvement in performance scores, with Dice ratios of 0.842 (SD 0.073, 95% CI 0.820-0.864) in center C and 0.855 (SD 0.097, 95% CI 0.826-0.886) in center D. Nonetheless, it did not overperform the supervised retraining, which achieved Dice ratios of 0.899 (SD 0.026, 95% CI 0.889-0.906) in center C and 0.886 (SD 0.046, 95% CI 0.870-0.903) in center D. CONCLUSIONS: Deploying the trained CNN model in different health care institutions may show significant performance degradation due to the domain shift of MRIs. Under this circumstance, the use of unsupervised domain adaptation or supervised retraining should be considered, taking into account the balance between clinical requirements, model performance, and the size of the available data.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Consensus , Neural Networks, Computer , Retrospective Studies , Meningeal Neoplasms/diagnostic imaging
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1270-1275, 2023 Oct 15.
Article in Chinese | MEDLINE | ID: mdl-37848324

ABSTRACT

Objective: To preliminarily verify the effectiveness of self-designed artificial condyle-mandibular distraction (AC-MD) complex in the treatment of Pruzansky type ⅡB and Ⅲ hemifacial microsomia (HFM) through model test. Methods: Five children with Pruzansky type ⅡB and Ⅲ HFM who were treated with mandibular distraction osteogenesis (MDO) between December 2016 and December 2021 were selected as the subjects. There were 3 boys and 2 girls wih an average age of 8.4 years (range, 6-10 years). Virtual surgery and model test of AC-MD complex were performed according to preoperative skull CT of children. The model was obtained by three-dimensional (3D) printing according to the children's CT data at a ratio of 1∶1. The occlusal guide plate was designed and 3D printed according to the children's toothpaste model. The results of the model test and the virtual surgery were matched in three dimensions to calculate the error of the residual condyle on the affected side, and the model test was matched with the actual skull CT after MDO to measure and compare the inclination rotation of the mandible, the distance between the condylar of the healthy side and the residual condyle of the affected side, and the lengthening length of the mandible. Results: The error of residual condyle was (1.07±0.78) mm. The inclination rotation of the mandible, the distance between the condylar of the healthy side and the residual condyle of the affected side, and the lengthening length of the mandible after 3D printing model test were significantly larger than those after MDO ( P<0.05). Conclusion: In the model test, the implantation of AC-MD complex can immediately rotate the mandible to the horizontal position and improve facial symmetry, and the residual condyle segment can be guided close to the articular fossa or the preset pseudoarticular position of the skull base after operation.


Subject(s)
Goldenhar Syndrome , Osteogenesis, Distraction , Male , Child , Female , Humans , Goldenhar Syndrome/surgery , Mandible/surgery , Osteogenesis, Distraction/methods , Printing, Three-Dimensional , Facial Asymmetry/surgery
18.
Materials (Basel) ; 16(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37512366

ABSTRACT

The axial force transfer ratio of steel-concrete joints in hybrid box girder bridges is crucial for bridge design. However, the current standard oversimplifies the transfer ratio distribution coefficients, and both model tests and finite element analysis are time- and labor-intensive. This article proposes a simplified calculation model based on the deformation coordination theory to estimate the transfer ratio of the axial force between the bearing plate and shear connectors of the steel-concrete joint under compression bending conditions. Additionally, a large-scale model (1/5 scale) is established, and the mechanical properties of the steel-concrete joint section under compression-bending conditions are experimentally tested. A three-dimensional finite element model is developed and verified using the obtained test data. Results confirm the favorable mechanical properties and ample safety reserve of the SCJ, with all components remaining within the elastic stage under 1.6 times design conditions. By comparing the axial force transfer ratios obtained from the simplified calculation model and the finite element model, a small difference is observed, validating the reliability of the simplified calculation model. This paper provides a straightforward and efficient method for the design and evaluation of steel-concrete joints in hybrid box girder bridges.

19.
Entropy (Basel) ; 25(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37509942

ABSTRACT

The unstable flow of a shaft tubular pump device (STPD) leads to energy loss, thereby reducing its efficiency. The aim of this study is to investigate the distribution pattern of energy loss in STPDs. This paper reveals that the two components with the highest proportion of energy loss are the impeller and the outlet passage. Furthermore, turbulent entropy production is the primary cause of energy loss. Due to the wall effect, the energy loss in the impeller mainly occurs near the hub and shroud. Additionally, the presence of a tip leakage vortex near the shroud further contributes to the energy loss in the region near the shroud. This results in the energy loss proportion exceeding 40% in the region with a volume fraction of 14% near the shroud. In the outlet passage, the energy loss mainly occurs in the front region, with a volume fraction of 30%, and the energy loss in this part accounts for more than 65%. Finally, this study reveals the locations of the vortex in the STPD under different flow-rate conditions, and when the distribution of energy loss is visualized, it is found that the energy loss occurs high in the vortex regions.

20.
Materials (Basel) ; 16(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37241264

ABSTRACT

For a wide-flanged composite box girder bridge, the risk of fatigue cracking in the external inclined strut welded joint under the fatigue vehicle load is a problem. The main purposes of this research are to verify the safety of the main bridge of the Linyi Yellow River Bridge, a continuous composite box girder bridge, and to propose suggestions for optimization. In this research, a finite element model of one segment of the bridge was established to investigate the influence surface of the external inclined strut, and, using the nominal stress method, it was confirmed that the fatigue cracking of the welded details of the external inclined strut was risky. Subsequently, a full-scale fatigue test of the external inclined strut welded joint was carried out, and the crack propagation law and S-N curve of the welded details were obtained. Finally, a parametric analysis was conducted with the three-dimensional refined finite element models. The results showed that the welded joint in the real bridge has a fatigue life larger than that of the design life, and methods such as increasing the flange thickness of the external inclined strut and the diameter of the welding hole are beneficial to improve its fatigue performance.

SELECTION OF CITATIONS
SEARCH DETAIL