Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Water Res ; 254: 121416, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38489851

ABSTRACT

Sulfonamides are applied worldwide as antibiotics. They are emerging contaminants of concern, as their presence in the environment may lead to the spread of antibiotic resistance genes. Sulfonamides are present in groundwater systems, which suggest their persistence under certain conditions, highlighting the importance of understanding natural attenuation processes in groundwater. Biodegradation is an essential process, as degradation of sulfonamides reduces the risk of antibiotic resistance spreading. In this review, natural attenuation, and in particular assessment of biodegradation, is evaluated for sulfonamides in groundwater systems. The current knowledge level on biodegradation is reviewed, and a scientific foundation is built based on sulfonamide degradation processes, pathways, metabolites and toxicity. An overview of bacterial species and related metabolites is provided. The main research effort has focused on aerobic conditions while investigations under anaerobic conditions are lacking. The level of implementation in research is laboratory scale; here we strived to bridge towards field application and assessment, by assessing approaches commonly used in monitored natural attenuation. Methods to document contaminant mass loss are assessed to be applicable for sulfonamides, while the approach is limited by a lack of reference standards for metabolites. Furthermore, additional information is required on relevant metabolites in order to improve risk assessments. Based on the current knowledge on biodegradation, it is suggested to use the presence of substituent-containing metabolites from breakage of the sulfonamide bridge as specific indicators of degradation. Microbial approaches are currently available for assessment of microbial community's capacities, however, more knowledge is required on indigenous bacteria capable of degrading sulfonamides and on the impact of environmental conditions on biodegradation. Compound specific stable isotope analysis shows great potential as an additional in situ method, but further developments are required to analyse for sulfonamides at environmentally relevant levels. Finally, in a monitored natural attenuation scheme it is assessed that approaches are available that can uncover some processes related to the fate of sulfonamides in groundwater systems. Nevertheless, there are still unknowns related to relevant bacteria and metabolites for risk assessment as well as the effect of environmental settings such as redox conditions. Alongside, uncovering the fate of sulfonamides in future research, the applicability of the natural attenuation documentation approaches will advance, and provide a step towards in situ remedial concepts for the frequently detected sulfonamides.


Subject(s)
Groundwater , Water Pollutants, Chemical , Sulfonamides , Water Pollutants, Chemical/analysis , Sulfanilamide/analysis , Sulfanilamide/metabolism , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Groundwater/microbiology , Bacteria/metabolism
2.
J Contam Hydrol ; 261: 104288, 2024 02.
Article in English | MEDLINE | ID: mdl-38176294

ABSTRACT

Petroleum pollution in soil and groundwater has emerged as a significant environmental concern worldwide. As a sustainable and cost-effective in-situ remediation technique, Monitored Natural Attenuation (MNA) exhibits significant promise in addressing sites contaminated by petrochemicals. This study specifically targets a typical petrochemical-contaminated site in northern China and employs GMS software to establish a comprehensive physical model. The model relies on time-series monitoring data of phenol concentrations spanning from 2018 to 2020, effectively simulating both the leakage and natural attenuation of phenol. Within this study, the adsorption coefficient and maximum adsorption capacity emerge as the foremost influential factors shaping the outcomes of the model. Given the inherent heterogeneity of the site and the variability of hydrochemical conditions, parameters such as dispersion, porosity, and adsorption coefficient exhibit significant uncertainties. Consequently, relying on traditional deterministic models to predict the feasibility of MNA technology is not reliable. Therefore, this study employs machine learning (ML) methods to construct stochastic parameter models based on physical processes. The Random Forest Regression (RFR) algorithm, after trained, demonstrates strong alignment with numerical model output, exhibiting an average Nash-Sutcliffe Efficiency (NSE) >0.96. Using a stochastic approach, RFR iteratively computes phenol concentration across 6000 sets of parameters. Applying probability statistics, the model shows a notable reduction in the likelihood of phenol concentrations exceeding a threshold, dropping from 64.0% to 15.7% before and after natural attenuation. In parameter uncertainty, the stochastic model emphasizes natural attenuation's efficacy in mitigating phenol pollution risk (porosity being the most influential factor). This case study proposed a novel method to quickly assess the pollution risks at petrochemical sites under the influence of the uncertainty of pollutant transport and reaction parameters. The results can provide a reference for the pollution risk assessment at petrochemical sites, especially in sites with high stratigraphic heterogeneity or insufficient transport parameter data.


Subject(s)
Environmental Monitoring , Groundwater , Environmental Pollution/analysis , Phenol/analysis , Risk Assessment
3.
Environ Res ; 216(Pt 4): 114816, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36400217

ABSTRACT

A large in-service petrochemical enterprises in Northeast China was taken as the research object, and the Collaborative Monitored Natural Attenuation (CMNA) for soil and groundwater pollution was carried out to remedy combined pollution and reduce environmental risks. The pollutants distributions were obtained based on detailed regional investigation (Mar. 2019), and feature pollutants in soil and groundwater were then screened. The spatiotemporal variations of feature pollutants and relative microbial responses were explored during the CMNA process. Furthermore, the CMNA efficiency of the contaminated site at initial stage was evaluated by calculation of natural attenuation rate constant. The results showed that the feature pollutants in soil were 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) and petroleum hydrocarbons (C10∼C40), and the feature pollutant in groundwater was 1,2-dichloroethane (1,2-DCA). The concentrations of all feature pollutants decreased continuously during four years of monitoring. Feature pollutants played a dominant role in the variability of microbial species both in soil and groundwater, increasing the relative abundance of petroleum tolerant/biodegradation bacteria, such as Actinobacteria, Proteobacteria and Acidobacteriota. The average natural attenuation rate constant of 2,2',5,5'-TCB and C10∼C40 in soil was 0.0012 d-1 and 0.0010 d-1, respectively, meeting the screening value after four years' attenuation. The average natural attenuation rate constant of 1,2-DCA was 0.0004 d-1, which need strengthening measures to improve the attenuation efficiency.


Subject(s)
Groundwater , Petroleum , Soil Pollutants , Water Pollutants, Chemical , Soil , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Groundwater/microbiology , Petroleum/analysis , Hydrocarbons/analysis , Biodegradation, Environmental , Soil Pollutants/analysis , Bacteria/metabolism
4.
J Hazard Mater ; 445: 130470, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36493644

ABSTRACT

Reactive iron (Fe) mineral coatings found in subsurface reduction-oxidation transition zones (RTZs) contribute to the attenuation of contaminants. An 18.3-m anoxic core was collected from the site, where constituents of concern (COCs) in groundwater included chlorinated solvents. Reactive Fe mineral coatings were found to be abundant in the RTZs. This research focused on evaluating reaction kinetics with anoxic sediments bearing ferrous mineral nano-coatings spiked with either tetrachloroethylene (PCE), trichloroethylene (TCE), or 1,4-dichlorobenzene (1,4-DCB). Reaction kinetics with RTZ sediments followed pseudo-first-order reactions for the three contaminants with 90% degradation achieved in less than 39 days. The second-order rate constants for the three COCs ranged from 6.20 × 10-4 to 1.73 × 10-3 Lg-1h-1 with pyrite (FeS2), 4.97 × 10-5 to 1.24 × 10-3 Lg-1h-1with mackinawite (FeS), 1.25 × 10-4 to 1.89 × 10-4 Lg-1h-1 with siderite (FeCO3), and 1.79 × 10-4 to 1.10 × 10-3 Lg-1h-1 with magnetite (Fe3O4). For these three chlorinated solvents, the trend for the rate constants followed: Fe(II) sulfide minerals > magnetite > siderite. The high reactivity of Fe mineral coatings is hypothesized to be due to the large surface areas of the nano-mineral coatings. As a result, these surfaces are expected to play an important role in the attenuation of chlorinated solvents in contaminated subsurface environments.


Subject(s)
Ferrosoferric Oxide , Trichloroethylene , Iron , Minerals , Oxidation-Reduction , Solvents
5.
Sci Total Environ ; 849: 157791, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35940262

ABSTRACT

An aquifer storage transfer and recovery (ASTR) system was studied in which tile drainage water (TDW) was injected with relatively high NO3 (about 14 mg/L) concentrations originating from fertilizers. Here we present the evolution of denitrification kinetics at 6 different depths in the aquifer before, and during ASTR operation. First-order denitrification rate constants increased over time before and during the first days of ASTR operation, likely due to microbial adaptation of the native bacterial community and/or bioaugmentation of the aquifer by denitrifying bacteria present in injected TDW. Push-pull tests were performed in the native aquifer before ASTR operation. Obtained first-order denitrification rate constants were negligible (0.00-0.03 d-1) at the start, but increased to 0.17-0.83 d-1 after a lag-phase of about 6 days. During the first days of ASTR operation in autumn 2019, the arrival of injected TDW was studied at 2.5 m distance from the injection well. First-order denitrification rate constants increased again over time (maximum >1 d-1). Three storage periods without injection were monitored in winter 2019, fall 2020, and spring 2021 during ASTR operation. First-order rate constants ranged between 0.12 and 0.61 d-1. Denitrification coupled to pyrite oxidation occurred at all depths, but other oxidation processes were indicated as well. NO3 concentration trends resembled Monod kinetics but were fitted also to a first-order decay rate model to facilitate comparison. Rate constants during the storage periods were substantially lower than during injection, probably due to a reduction in the exchange rate between aquifer solid phases and injected water during the stagnant conditions. Denitrification rate constants deviated maximally a factor 5 over time and depth for all in-situ measurement approaches after the lag-phase. The combination of these in-situ approaches enabled to obtain more detailed insights in the evolution of denitrification kinetics during AS(T)R.


Subject(s)
Groundwater , Water Pollutants, Chemical , Denitrification , Factor V , Fertilizers , Groundwater/microbiology , Kinetics , Nitrates/analysis , Water , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 846: 157316, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35842168

ABSTRACT

Although biochar (BC) and monitored natural attenuation (MNA) are regarded as green technologies for remediating volatile organic compounds (VOCs) contaminated groundwater, their life cycle environmental impacts and costs have not been systematically quantified. This work assessed the primary and secondary environmental impacts and the cost of three options for remediating the groundwater at a closed pesticide manufacturing plant site, which was contaminated by high levels of multiple VOCs and is undergoing MNA. The studied options include a combination of MNA and BC (MNA + BC), BC, and pump and treat (PT). The environmental impacts were examined through a Life Cycle Assessment (LCA) using the ReCiPe 2016 method. The costs were evaluated using a Life Cycle Cost (LCC) method created in the SimaPro. The LCA results show that the overall environmental impacts follow the sequence of PT > BC > MNA + BC, but MNA + BC shows evident primary impacts. The CO2 eq emissions generated from PT are more than five times of MNA + BC or BC. The cement, electricity, and steel for construction, and the operation energy are the environmental hotspots in PT. In MNA + BC and BC, the electricity for feedstock pyrolysis is the environmental hotspot, while the use of BC by-products to generate heat and power has positive environmental credit that compensates other negative environmental burdens. Incorporating institutional controls, using renewable energy and recycled or alternative materials, and developing BC with superior adsorption capacity are recommended to optimize the remediation strategies. The LCC results show that PT renders the highest cost, with cement and electricity being the two most expensive items. Electricity is the dominant contributor to the costs of MNA + BC and BC, while the avoided heat and power generation can save the cost of other items. Overall, this study provides scientific support to develop and optimize green remediation solutions for VOCs contaminated groundwater.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Volatile Organic Compounds , Charcoal , Environment
7.
J Contam Hydrol ; 247: 103987, 2022 05.
Article in English | MEDLINE | ID: mdl-35286952

ABSTRACT

Groundwater fate and transport modeling results demonstrate that matrix diffusion plays a role in attenuating the expansion of groundwater plumes of "non-degrading" or highly recalcitrant compounds. This is especially significant for systems where preferred destructive attenuation processes, such as biological and abiotic degradation, are weak or ineffective for plume control. Under these conditions, models of nondestructive physical attenuation processes, traditionally dispersion or sorption, do not demonstrate sufficient plume control unless matrix diffusion is considered. Matrix diffusion has been shown to be a notable emergent impact of geological heterogeneity, typically associated with back diffusion and extending remediation timeframes through concentration tailing of the trailing edge of a plume. However, less attention has been placed on evaluating how matrix diffusion can serve as an attenuation mechanism for the leading edge of a plume of non-degrading compounds like perfluoroalkyl acids (PFAAs), including perfluorooctane sulfonate (PFOS). In this study, the REMChlor-MD model was parametrically applied to a generic unconsolidated and heterogeneous geologic site with a constant PFOS source and no degradation of PFOS in the downgradient edge of the plume. Low levels of mechanical dispersion and retardation were used in the model for three different geologic heterogeneity cases ranging from no matrix diffusion (e.g., sand only) to considerable matrix diffusion using low permeability ("low-k") layers/lenses and/or aquitards. Our analysis shows that, in theory, many non-degrading plumes may expand for significant time periods before dispersion alone would eventually stabilize the plume; however, matrix diffusion can significantly slow the rate and degree of this migration. For one 100-year travel time scenario, consideration of matrix diffusion results in a simulated PFOS plume length that is over 80% shorter than the plume length simulated without matrix diffusion. Although many non-degrading plumes may continue to slowly expand over time, matrix diffusion resulted in lower concentrations and smaller plume footprints. Modeling multiple hydrogeologic settings showed that the effect of matrix diffusion is more significant in transmissive zones containing multiple low-k lenses/layers than transmissive zones underlain and overlain by low-k aquitards. This study found that at sites with significant matrix diffusion, groundwater plumes will be shorter, will expand more slowly, and may be amenable to a physical, retention-based, Monitored Natural Attenuation (MNA) paradigm. In this case, a small "Plume Assimilative Capacity Zone" in front of the existing plume could be reserved for slow, de minimus, future expansion of a non-degrading plume. If potential receptors are protected in this scenario, then this approach is similar to allowances for expanding plumes under some existing environmental regulatory programs. Accounting for matrix diffusion may support new strategic approaches and alternative paradigms for remediation even for sites and conditions with "non-degrading" constituents such as PFAAs, metals/metalloids, and radionuclides.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Diffusion , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
8.
Front Microbiol ; 12: 601705, 2021.
Article in English | MEDLINE | ID: mdl-33897628

ABSTRACT

Monitored natural recovery (MNR) is an in situ technique of conventional remediation for the treatment of contaminated sediments that relies on natural processes to reduce the bioavailability or toxicity of contaminants. Metabarcoding and bioinformatics approaches to infer functional prediction were applied in bottom sediments of a tributary drainage channel of Río de La Plata estuary, in order to assess the biological contribution to MNR. Hydrocarbon concentration in water samples and surface sediments was below the detection limit. Surface sediments were represented with high available phosphorous, alkaline pH, and the bacterial classes Anaerolineae, Planctomycetia, and Deltaproteobacteria. The functional prediction in surface sediments showed an increase of metabolic activity, carbon fixation, methanogenesis, and synergistic relationships between Archaeas, Syntrophobacterales, and Desulfobacterales. The prediction in non-surface sediments suggested the capacity to respond to different kinds of environmental stresses (oxidative, osmotic, heat, acid pH, and heavy metals), predicted mostly in Lactobacillales order, and the capacity of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinomyces classes to degrade xenobiotic compounds. Canonical correspondence analysis (CCA) suggests that depth, phosphate content, redox potential, and pH were the variables that structured the bacterial community and not the hydrocarbons. The characterization of sediments by metabarcoding and functional prediction approaches, allowed to assess how the microbial activity would contribute to the recovery of the site.

9.
Appl Microbiol Biotechnol ; 104(9): 4155-4170, 2020 May.
Article in English | MEDLINE | ID: mdl-32170385

ABSTRACT

1,4-Dioxane, a probable human carcinogen, is a co-contaminant at many chlorinated solvent-contaminated sites. Although numerous 1,4-dioxane-degrading aerobic bacteria have been isolated, almost no information exists on the microorganisms able to degrade this chemical under anaerobic conditions. Here, the potential for 1,4-dioxane biodegradation was examined using multiple inocula and electron acceptor amendments. The inocula included uncontaminated agricultural soils and river sediments as well as sediments from two 1,4-dioxane contaminated sites. Five separate experiments involved the examination of triplicate live microcosms and abiotic controls for approximately 1 year. Compound-specific isotope analysis (CSIA) was used to further investigate biodegradation in a subset of the microcosms. Also, DNA was extracted from microcosms exhibiting 1,4-dioxane biodegradation for microbial community analysis using 16S rRNA gene amplicon high-throughput sequencing. Given the long incubation periods, it is likely that electron acceptor depletion occurred and methanogenic conditions eventually dominated. The iron/EDTA/humic acid or sulfate amendments did not result in 1,4-dioxane biodegradation in the majority of cases. 1,4-dioxane biodegradation was most commonly observed in the nitrate amended and no electron acceptor treatments. Notably, both contaminated site sediments illustrated removal in the samples compared to the abiotic controls in the no electron acceptor treatment. However, it is important to note that the degradation was slow (with concentration reductions occurring over approximately 1 year). In two of the three cases examined, CSIA provided additional evidence for 1,4-dioxane biodegradation. In one case, the reduction in 1,4-dioxane in the samples comparing the controls was likely too low for the method to detect a significant 13C/12C enrichment. Further research is required to determine the value of measuring 2H/1H for generating evidence for the biodegradation of this chemical. The microbial community analysis indicated that the phylotypes unclassified Comamonadaceae and 3 genus incertae sedis were more abundant in 1,4-dioxane-degrading microcosms compared to the live controls (no 1,4-dioxane) in microcosms inoculated with contaminated and uncontaminated sediment, respectively. The relative abundance of known 1,4-dioxane degraders was also investigated at the genus level. The soil microcosms were dominated primarily by Rhodanobacter with lower relative abundance values for Pseudomonas, Mycobacterium, and Acinetobacter. The sediment communities were dominated by Pseudomonas and Rhodanobacter. Overall, the current study indicates 1,4-dioxane biodegradation under anaerobic and, likely methanogenic conditions, is feasible. Therefore, natural attenuation may be an appropriate cleanup technology at sites where time is not a limitation.


Subject(s)
Dioxanes/metabolism , Geologic Sediments/microbiology , Microbiota , Soil Microbiology , Water Pollutants, Chemical/metabolism , Anaerobiosis , Biodegradation, Environmental , Electrons , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics
10.
Chemosphere ; 247: 125848, 2020 May.
Article in English | MEDLINE | ID: mdl-31958648

ABSTRACT

A Monitored Natural Attenuation (MNA) assessment approach typically used for contaminant remediation feasibility assessment was developed here for remediation-reagent delivery assessment. Subsurface delivery of oxidants, such as aqueous ozone (O3) for in situ chemical oxidation (ISCO) of groundwater contaminants, is naturally attenuated by oxidant demand and reactivity. We compared mixed reactor kinetic experiments, sand column tracer transport experiments, and reactive transport modeling and assessment methods to quantify natural attenuation kinetics, aqueous O3 solute transport, oxidant demand kinetics, and ISCO reagent delivery limitations. Sorption of aqueous O3 to quartz sand was observed during transport of O3 through water-saturated porous media. Pseudo 1st order decomposition rate constants of O3 bulk attenuation with transport were comparable to mixed reactor experiments without transport, and reactive transport modeling of miscible-displacement column experiments was used to quantify each attenuation process. Aqueous ionic strength was correlated with O3 decomposition rate constants, which was the dominant reagent delivery attenuation process. These results suggest that aqueous O3 decomposition and oxidant delivery attenuation can be predictable upon characterization of the sediment oxidant demand and dispersion, and increasing groundwater velocity during aqueous O3 injection can maximize transport distance for reagent delivery.


Subject(s)
Environmental Restoration and Remediation/methods , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Kinetics , Oxidants/chemistry , Oxidation-Reduction , Porosity , Solutions , Water/chemistry , Water Pollutants, Chemical/analysis
11.
J Contam Hydrol ; 226: 103520, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31377464

ABSTRACT

Back-diffusion of chlorinated ethenes (CEs) from low-permeability layers (LPLs) causes contaminant persistence long after the primary spill zones have disappeared. Naturally occurring degradation in LPLs lowers remediation time frames, but its assessment through sediment sampling is prohibitive in conventional remediation projects. Scenario simulations were performed with a reactive transport model (PHT3D in FloPy) accounting for isotope effects associated with degradation, sorption, and diffusion, to evaluate the potential of CSIA data from aquifers in assessing degradation in aquitards. The model simulated a trichloroethylene (TCE) DNAPL and its pollution plume within an aquifer-aquitard-aquifer system. Sequential reductive dechlorination to ethene and sorption were uniform in the aquitard and did not occur in the aquifer. After 10 years of loading the aquitard through diffusion from the plume, subsequent source removal triggered release of TCE by back-diffusion. In the upper aquifer, during the loading phase, δ13C-TCE was slightly enriched (up to 2‰) due to diffusion effects stimulated by degradation in the aquitard. In the upper aquifer, during the release phase, (i) source removal triggered a huge δ13C increase especially for higher CEs, (ii) moreover, downstream decreasing isotope ratios (caused by downgradient later onset of the release phase) with temporal increasing isotope ratios reflect aquitard degradation (as opposed to downstream increasing and temporally constant isotope ratios in reactive aquifers), and (iii) the carbon isotope mass balance (CIMB) enriched up to 4‰ as lower CEs (more depleted, less sorbing) have been transported deeper into the aquitard. Thus, enriched CIMB does not indicate oxidative transformation in this system. The CIMB enrichment enhanced with more sorption and lower aquitard thickness. Thin aquitards are quicker flushed from lower CEs leading to faster CIMB enrichment over time. CIMB enrichment is smaller or nearly absent when daughter products accumulate. Aquifer CSIA patterns indicative of aquitard degradation were similar in case of linear decreasing rate constants but contrasted with previous simulations assuming a thin bioactive zone. The Rayleigh equation systematically underestimates the extent of TCE degradation in aquifer samples especially during the loading phase and for conditions leading to long remediation time frames (low groundwater flow velocity, thicker aquitards, strong sorption in the aquitard). The Rayleigh equation provides a good and useful picture on aquitard degradation during the release phase throughout the sensitivity analysis. This modelling study provides a framework on how aquifer CSIA data can inform on the occurrence of aquitard degradation and its pitfalls.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Biodegradation, Environmental , Ethylenes
12.
J Environ Manage ; 212: 8-16, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29427942

ABSTRACT

Gasohol blend spills with variable ethanol content exert different electron acceptor demands in groundwater and the distinct dynamics undergone by these blends underscores the need for field-based information to aid decision-making on suitable remediation technologies for each gasohol blend spill. In this study, a comparison of two gasohol releases (E10 (10:90 ethanol and gasoline, v/v) and E25 (25:75 ethanol and gasoline, v/v) under monitored natural attenuation (MNA) and nitrate biostimulation, respectively) was conducted to assess the most effective remediation strategy for each gasohol release. Microbial communities were assessed to support geochemical data as well as to enable the characterization of important population shifts that evolve during biodegradation processes in E25 and E10 field experiments. Results revealed that natural attenuation processes sufficiently supported ethanol and BTEX compounds biodegradation in E10 release, due to the lower biochemical oxygen demand they exert relative to E25 blend. In E25 release, nitrate reduction was largely responsible for BTEX and ethanol biodegradation, as intended. First-order decay constants demonstrated that ethanol degradation rates were similar (p < 0.05) for both remediation technologies (2.05 ±â€¯0.15 and 2.22 ±â€¯0.23, for E25 and E10, respectively) whilst BTEX compounds exhibited different degradation rates (p > 0.05) that were higher for the experiment under MNA (0.33 ±â€¯0.06 and 0.43 ±â€¯0.03, for E25 and E10, respectively). Therefore, ethanol content in different gasohol blends can influence the decision-making on the most suitable remediation technology, as MNA processes can be applied for the remediation of gasohol blends with lower ethanol content (i.e., 10% v/v), once the aquifer geochemical conditions provide a sufficient electron acceptor pool. To the best of our knowledge, this is the first field study to monitor two long-term gasohol releases over various time scales in order to assess feasible remediation technologies for each scenario.


Subject(s)
Biodegradation, Environmental , Ethanol/analysis , Gasoline , Groundwater , Nitrates
13.
Front Microbiol ; 8: 2300, 2017.
Article in English | MEDLINE | ID: mdl-29213257

ABSTRACT

The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 µg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.

14.
Waste Manag ; 53: 144-55, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26601889

ABSTRACT

In this study, a multi-tracer approach was applied to a complex, methane-impacted site in Southern California to (1) distinguish between natural gas and landfill gas (LFG)-derived methane impacts at site perimeter gas probes, (2) estimate the relative age of the LFG at these probes, and (3) document natural attenuation trends during a 3-year monitoring period. Relationships between methane and ethane values suggest that at the majority of probes, methane is from LFG and not from natural gas and that the relative contribution of LFG methane at these probes has increased over the monitoring period. To evaluate whether LFG is attenuating in the subsurface, the relative age of LFG was estimated by comparing readily degraded VOCs that are major constituents in LFG (toluene in this case) with those resistant to degradation (Freons). Time-series data trends are consistent with several probes being impacted by fresh LFG from recent releases that occurred after the update of the local LFG collection and control system (LFGCCS). Data further indicate some probes to be only affected by legacy LFG from a past release that occurred prior to the LFGCCS update and that, because of a lack of oxygen in the subsurface, had not been fully degraded. The outlined attenuation evaluation methodology is potentially applicable to other sites or even groundwater contaminants; however, the assessment is limited by the degree of homogeneity of the LFG source composition and non-LFG-derived toluene inputs to the analyzed samples.


Subject(s)
Air Pollutants/analysis , Refuse Disposal/methods , Volatile Organic Compounds/analysis , Waste Disposal Facilities , Air Pollutants/chemistry , California , Volatile Organic Compounds/chemistry
15.
J Contam Hydrol ; 171: 1-11, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25461882

ABSTRACT

Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.


Subject(s)
Geologic Sediments/analysis , Groundwater/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Water Quality , Models, Theoretical , New Jersey , Time Factors , Water Wells/analysis
16.
Waste Manag Res ; 31(12): 1190-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24163378

ABSTRACT

A case study is presented on waste management practices implemented after a residual fuel oil spill from a steam-generating boiler in an industrial area, and on the technical feasibility of monitored natural attenuation as a treatment option for a recently contaminated tropical soil. One day after contamination, surface soil total petroleum hydrocarbons and phenanthrene concentrations varied from 3.1 to 7.9 g kg(-1) and 149 to 287 µg kg(-1), respectively. Petroleum hydrocarbon concentrations decayed along the monitored time and after 90 days of processes the soil was considered rehabilitated for future industrial use.


Subject(s)
Environmental Restoration and Remediation/methods , Petroleum Pollution/analysis , Waste Management/methods , Biodegradation, Environmental , Brazil , Environmental Monitoring , Hydrocarbons/analysis , Petroleum/analysis , Phenanthrenes/analysis , Soil Pollutants/analysis , Time Factors
17.
Eng. sanit. ambient ; 12(3): 259-265, jul.-set. 2007. ilus, graf
Article in Portuguese | LILACS | ID: lil-466561

ABSTRACT

Nesse estudo, foram avaliados os resultados de um experimento de derramamento controlado de gasolina brasileira em água subterrânea durante 6,5 anos de monitoramento. A exaustão do etanol, aos 32 meses de monitoramento, e a significativa redução de mais de 90 por cento da massa máxima dos compostos BTEX dissolvidos no meio, aos 79 meses, associadas ao uso dos receptores de elétrons e acúmulo de seus subprodutos metabólicos, demonstraram a eficácia da atenuação natural monitorada para contaminações de águas subterrâneas sem riscos imediatos a receptores críticos. Constatou-se ainda que a biodegradação do etanol permitiu a formação de uma biobarreira natural que, após a sua completa degradação, acelerou a taxa de biodegradação dos BTEX e impediu o avanço da pluma destes contaminantes.


In this study, results of 6.5 years of a controlled release experiment with Brazilian gasoline in groundwater were evaluated. Ethanol exhaustion after 32 months and the significant dissolved BTEX mass reduction of more than 90 percent after 79 months, associated with the electron acceptors use and their metabolic byproducts accumulation, demonstrated the efficiency of monitored natural attenuation for groundwater contamination without immediate risk to receptors. Moreover, ethanol degradation provided a natural biobarrier formation that increased BTEX biodegradation rate and prevented the BTEX plume expansion.


Subject(s)
Groundwater , Biodegradation, Environmental , Ethanol , Gasoline , Environmental Monitoring , Disaster Mitigation
SELECTION OF CITATIONS
SEARCH DETAIL