Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932074

ABSTRACT

The purpose of this study is to prepare monodisperse silica mesoporous microspheres with narrow pore size distribution to promote their application in the field of liquid chromatography. An improved emulsion method was used to prepare silica mesoporous microspheres, and the rotary evaporation temperature, emulsification speed, dosage of porogen DMF, and dosage of the catalyst NH3·H2O were optimized. Subsequently, these microspheres were respectively treated by alkali-heating, calcination, and sieving. The D50 (particle size at the cumulative particle size distribution percentage of 50%) of as-prepared silica mesoporous microspheres is 26.3 µm, and the D90/D10 (the ratio of particle size at a cumulative particle size distribution percentage of 90% to a cumulative particle size distribution percentage of 10%) is 1.94. The resultant silica mesoporous microspheres have distinctive pore structures, with a pore volume of more than 1.0 cm3/g, an average pore size of 11.35 nm, and a median pore size of 13.4 nm. The silica mesoporous microspheres with a large particle size, uniform particle size distribution, large average pore size and pore volume, and narrow mesopore size distribution can basically meet the requirements of preparative liquid chromatographic columns.

2.
Int J Biol Macromol ; 231: 123160, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36610575

ABSTRACT

Transarterial chemoembolization (TACE) is an important approach for the treatment of unresectable hepatocellular carcinoma (HCC). However, the lactic acid-induced acidic tumor microenvironment (TME) may reduce the therapeutic outcome of TACE. Herein, monodispersed gelatin microspheres loaded with calcium carbonate nanoparticles (CaNPs@Gel-MS) as novel embolic agents were prepared by a simplified microfluidic device. It was found that the particle size and homogeneity of as-prepared CaNPs@Gel-MS were strongly dependent on the flow rates of continuous and dispersed phases, and the inner diameter of syringe needle. The introduction of CaNPs provided the gelatin microspheres with an enhanced ability to encapsulate the chemotherapeutic drug of DOX, as well as a pH-responsive sustained drug release behavior. In vitro results revealed that CaNPs@Gel-MS could largely increase the cellular uptake and chemotoxicity of DOX by neutralizing the lactic acid in the culture medium. In addition, CaNPs@Gel-MS exhibited an excellent and persistent embolic efficiency in a rabbit renal model. Finally, we found that TACE treatment with DOX-loaded CaNPs@Gel-MS (DOX/CaNPs@Gel-MS) had a much stronger ability to inhibit tumor growth than the DOX-loaded gelatin microspheres without CaNPs (DOX@Gel-MS). Overall, CaNPs@Gel-MS could be a promising embolic microsphere that can significantly improve anti-HCC ability by reversing lactic acid-induced chemotherapy resistance during TACE treatment.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Animals , Rabbits , Carcinoma, Hepatocellular/drug therapy , Doxorubicin , Liver Neoplasms/drug therapy , Microspheres , Gelatin , Lactic Acid/therapeutic use , Chemoembolization, Therapeutic/methods , Drug Carriers/therapeutic use , Tumor Microenvironment
3.
J Colloid Interface Sci ; 628(Pt B): 116-128, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35987151

ABSTRACT

HYPOTHESIS: Surface-enhanced Raman spectroscopy (SERS) has become an emerging and reliable tool for detecting pesticide residues due to its high sensitivity, fast testing speed and easy sample handling. SERS active substrates are the key to achieve efficient and sensitive detection. However, for the most widely used noble metal nanoparticles, there are problems of high noble metal nanoparticle usage and random aggregation. The micron-scale Raman spot is focused on multiple randomly aggregated nanoparticles during the test, resulting in poor reproducibility. Therefore, the development of micron-scale cost-effective SERS substrates with good reproducibility and simple detecting method is of great significance in practical detection. EXPERIMENTS: Through deposition of silver nanoparticles (Ag-NPs) by chemical reduction on the surface of monodisperse sulfonated polystyrene (SPS) microspheres, micron-sized PS@Ag-NPs core-shell microspheres were prepared with excellent SERS activity. After that, two simple protocols (Method I and Method II) were explored for the determination of thiram on apple epidermis. FINDINGS: Based on our developed strategy of the single microsphere SERS technique, we successfully fabricated uniform PS@Ag-NPs substrate with high SERS activity and excellent detection sensitivity. The single microsphere SERS technique possesses the capability of anti-dilutability and the utilization of ultra-low PS@Ag-NPs microsphere dosage, realizing qualitative and quantitative detection of thiram on apple with detection limits far below the standard stipulated by China and the European Union.


Subject(s)
Metal Nanoparticles , Pesticide Residues , Spectrum Analysis, Raman/methods , Pesticide Residues/analysis , Metal Nanoparticles/chemistry , Silver/chemistry , Thiram/analysis , Thiram/chemistry , Microspheres , Fruit/chemistry , Polystyrenes/chemistry , Reproducibility of Results
4.
J Chromatogr A ; 1615: 460776, 2020 Mar 29.
Article in English | MEDLINE | ID: mdl-31839354

ABSTRACT

Inspired by the fact that antibody recognizes antigen's epitope rather than its whole structure, we selected the glycosyl moiety of teicoplanin as the template, 4-vinylphenylboronic acid and methyl methacrylate as the functional monomers, and divinylbenzene as the cross-linker to synthesis molecularly imprinted polymer microspheres via precipitation co-polymerization. The glycosyl-imprinted microspheres can selectively capture the target glycopeptide antibiotic in aqueous solutions when the pH of surrounding environment is 9.0, and the captured antibiotic can be reversibly released when the pH falls below 4.0 again. This pH-controlled catch-and-release mechanism permits entrapping of glycopeptide antibiotics in slightly basic environments and keeping them entrapped under neutral conditions, and eluting in acidic media. Five teicoplanin components were selectively captured by using the prepared glycosyl-imprinted microspheres as solid-phase extraction adsorbents, and then detected using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Finally, the method was thoroughly validated for accuracy and reproducibility by determining teicoplanin in food and biological samples, and achieving quantification limits of 0.1 µg/kg, 0.5 µg/L and 1.0 µg/L for milk, urine and plasma samples, respectively.


Subject(s)
Chromatography, High Pressure Liquid , Food Analysis/methods , Microspheres , Polymers/chemistry , Solid Phase Extraction/instrumentation , Tandem Mass Spectrometry , Teicoplanin/analysis , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Limit of Detection , Milk/chemistry , Molecular Imprinting , Polymerization , Reproducibility of Results , Vinyl Compounds/chemistry , Water/chemistry
5.
Materials (Basel) ; 12(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31717907

ABSTRACT

Monodisperse polyvinyl alcohol (PVA) microspheres have been widely used for targeted drug delivery, embolization, and templates. However, the fast and facile fabrication of PVA microspheres with uniform size and internal structure and good sphericity remains a challenge. In this study, the PVA microspheres with uniformity in the size, shape, and internal structure were rapidly fabricated, using single-emulsion droplet templates by an on-chip approach. First, we designed a polydimethylsiloxane (PDMS) microfluidic chip integrated with three functional units, used for the droplet generation, mixing of reagents, and pre-curing of PVA microspheres, respectively. Then, we precisely controlled the generation of PVA aqueous droplets, mixing of reagents, and the gelation rate for the production of high-quality microspheres by adjusting the pH value, flow rate, and the channel structure. The prepared PVA microspheres are characterized with good sphericity, uniform internal structure, and narrow size distribution. The microspheres have good adsorption capacity and recyclability for small-molecule drugs, as demonstrated by the adsorption and desorption of methylene blue (MB). The adsorption behavior is well described by the pseudo-second-order model, and intraparticle diffusion is as fast as the external film diffusion.

6.
ACS Biomater Sci Eng ; 4(7): 2390-2403, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-33435104

ABSTRACT

The aim of this study was to develop a formulation with a sustained intra-articular release of the anti-inflammatory drug tacrolimus. Drug release kinetics from the prepared tacrolimus loaded monodisperse biodegradable microspheres based on poly(d-l-lactide-PEG)-b-poly(l-lactide) multiblock copolymers were tunable by changing polymer composition, particularly hydrophobic-hydrophilic block ratio. The monospheres were 30 µm and released the drug, depending on the formulation, in 7 to >42 days. The formulation exhibiting sustained release for 1 month was selected for further in vivo evaluation. Rat knees were injected with three different doses of tacrolimus (10 wt %) loaded monospheres (2.5, 5.0, and 10 mg), contralateral control knees with saline. Micro-CT and histology showed no negative changes on cartilage, indicating good biocompatibility. Minor osteophyte formation was seen in a dose dependent fashion, suggesting local drug release and therapeutic action thereof. To investigate in vivo drug release, tacrolimus monospheres were injected into horse joints, after which multiple blood and synovial fluid samples were taken. Sustained intra-articular release was seen during the entire four-week follow-up, with negligible systemic drug concentrations (<1 ng/mL), confirming the feasibility of local intra-articular drug delivery without provoking systemic effects. Intra-articular injection of unloaded monospheres led to a transient inflammatory reaction, measured by total synovial leucocyte count (72 h). This reaction was significantly lower in joints injected with tacrolimus loaded monospheres, showing not only the successful local tacrolimus delivery but also local anti-inflammatory action. This local anti-inflammatory potential without systemic side-effects can be beneficial in the treatment of inflammatory joint diseases, among which is osteoarthritis.

7.
Acta Biomater ; 48: 401-414, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27816621

ABSTRACT

In this study, we investigated the use of microspheres with a narrow particle size distribution ('monospheres') composed of biodegradable poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide) multiblock copolymers that are potentially suitable for local sustained drug release in articular joints. Monospheres with sizes of 5, 15 and 30µm and a narrow particle size distribution were prepared by a micro-sieve membrane emulsification process. During in vitro degradation, less crystallinity, higher swelling and accelerated mass loss during was observed with increasing the PEG content of the polymer. The monospheres were tested in both a small (mice/rat) and large animal model (horse). In vivo imaging after injection with fluorescent dye loaded microspheres in mice knees showed that monospheres of all sizes retained within the joint for at least 90days, while the same dose of free dye redistributed to the whole body within the first day after intra-articular injection. Administration of monospheres in equine carpal joints caused a mild transient inflammatory response without any clinical signs and without degradation of the cartilage, as evidenced by the absence of degradation products of sulfated glycosaminoglycans or collagen type 2 in the synovial fluid. The excellent intra-articular biocompatibility was confirmed in rat knees, where µCT-imaging and histology showed neither changes in cartilage quality nor quantity. Given the good intra-articular retention and the excellent biocompatibility, these novel poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide)-based monospheres can be considered a suitable platform for intra-articular drug delivery. STATEMENT OF SIGNIFICANCE: This paper demonstrates the great potential in intra-articular drug delivery of monodisperse biodegradable microspheres which were prepared using a new class of biodegradable multi-block copolymers and a unique membrane emulsification process allowing the preparation of microspheres with a narrow particle size distribution (monospheres) leading to multiple advantages like better injectability, enhanced reproducibility and predictability of the in vivo release kinetics. We report not only on the synthesis and preparation, but also in vitro characterization, followed by in vivo testing of intra-articular biocompatibility of the monospheres in both a small and a large animal model. The favourable intra-articular biocompatibility combined with the prolonged intra-articular retention (>90days) makes these monospheres an interesting drug delivery platform. What should also be highlighted is the use of horses; a very accurate translational model for the human situation, making the results not only relevant for equine healthcare, but also for the development of novel human OA therapies.


Subject(s)
Materials Testing/methods , Microspheres , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Biocompatible Materials/pharmacology , Cartilage/drug effects , Fluorescence , Horses , Injections, Intra-Articular , Kinetics , Magnetic Resonance Spectroscopy , Male , Mice , Molecular Weight , Particle Size , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Rats, Wistar , Synovial Fluid/drug effects , Temperature , X-Ray Microtomography
8.
Pharm Dev Technol ; 22(6): 836-843, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27494230

ABSTRACT

The aim of the present study is to prepare risperidone-loaded poly lactic-co-glycolic acid (PLGA) microspheres within microfluidic system and to achieve a formulation with uniform size and monotonic and reproducible release profile. In comparison to batch method, T-junction and serpentine chips were utilized and optimizing study was carried out at different processing parameters (e.g. PLGA and surfactant concentration and flow rates ratio of outer to inner phase). The computational fluid dynamic (CFD) modeling was performed, and loading and release study were carried out. CFD simulation indicates that increasing the flow rate of aqueous phase cause to decrease the droplet size, while the change in size of microspheres did not follow a specific pattern in the experimental results. The most uniform microspheres and narrowest standard deviation (66.79 µm ± 3.32) were achieved using T-junction chip, 1% polyvinylalcohol, 1% PLGA and flow rates ratio of 20. The microfluidic-assisted microspheres were more uniform with narrower size distribution. The release of risperidone from microspheres produced by the microfluidic method was more reproducible and closer to zero-order kinetic model. The release profile of formulation with 2:1 drug-to-polymer ratio was the most favorable release, in which 41.85% release could be achieved during 24 days.


Subject(s)
Glycols , Microspheres , Microfluidics , Risperidone
9.
Small ; 12(32): 4357-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27337299

ABSTRACT

Monodisperse carbon spheres between 500 and 900 nm are hydrothermally synthesized from glucose on polystyrene seeds. Control over temperature, time, glucose concentration, and seed size yields hybrid spheres without aggregation and no additional spheres population. Pyrolysis transforms the hybrid into hollow carbon spheres preserving monodispersity. This approach provides a basis for functional carbon spheres applicable in photonics and energy storage.

10.
ACS Biomater Sci Eng ; 2(11): 1872-1882, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-33440524

ABSTRACT

Next generation drug-loaded polymer scaffolds for hard tissue engineering require unique structures to enhance release kinetics while enabling bone cell growth (osteogenesis). This study examined the encapsulation of the pro-angiogenic mediator, ginsenoside Rg1, into biodegradable poly(propylene fumarate) (PPF) microspheres to facilitate osteogenesis, while examining the release mechanism using advanced X-ray absorption near edge structure spectroscopy (XANES). Ginsenoside Rg1-loaded PPF microspheres were prepared using both an emulsion method and a microfluidic device, with the microfluidic technique providing tunable unimodal PPF spheres ranging in size from 3 to 52 µm by varying the flow rates. The morphology and composition of the Rg1-loaded PPF microspheres were characterized using FTIR, XRD, and XANES to examine the distribution of ginsenoside Rg1 throughout the polymer matrix. Encapsulation efficiency and release profiles were studied and quantified by UV-Vis spectrophotometry, showing high encapsulation efficiencies of 95.4 ± 0.8% from the microfluidic approach. Kinetic analysis showed that Rg1 release from the more monodisperse PPF microspheres was slower with a significantly smaller burst effect than from the polydisperse spheres, with the release following Fickian diffusion. The released Rg1 maintained its angiogenic effect in vitro, showing that the PPF microspheres are promising to serve as vehicles for long-term controlled drug delivery leading to therapeutic angiogenesis in bone tissue engineering strategies.

11.
Biosci Biotechnol Biochem ; 79(11): 1852-9, 2015.
Article in English | MEDLINE | ID: mdl-26039096

ABSTRACT

Stabilization of l-ascorbic acid (l-AA) is a challenging task for food and pharmaceutical industries. The study was conducted to prepare monodisperse aqueous microspheres containing enhanced concentrations of l-AA by using microchannel emulsification (MCE). The asymmetric straight-through microchannel (MC) array used here constitutes 11 × 104 µm microslots connected to a 10 µm circular microholes. 5-30% (w/w) l-AA was added to a Milli-Q water solution containing 2% (w/w) sodium alginate and 1% (w/w) magnesium sulfate, while the continuous phase constitutes 5% (w/w) tetraglycerol condensed ricinoleate in water-saturated decane. Monodisperse aqueous microspheres with average diameters (dav) of 18.7-20.7 µm and coefficients of variation (CVs) below 6% were successfully prepared via MCE regardless of the l-AA concentrations applied. The collected microspheres were physically stable in terms of their dav and CV for >10 days of storage at 40°C. The aqueous microspheres exhibited l-AA encapsulation efficiency exceeding 70% during the storage.


Subject(s)
Ascorbic Acid/chemistry , Emulsions/chemistry , Water/chemistry , Alginates/chemistry , Drug Compounding , Food Industry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microspheres , Particle Size
12.
Int J Pharm ; 482(1-2): 99-109, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25497444

ABSTRACT

Poly(D,L-lactic-co-hydroxymethyl glycolic acid) (PLHMGA) is a biodegradable copolymer with potential as a novel carrier in polymeric drug delivery systems. In this study, the biocompatibility of PLHMGA microspheres (PLHMGA-ms) was investigated both in vitro in three different cell types (PK-84, HK-2 and PTECs) and in vivo at two implantation sites (by subcutaneous and subcapsular renal injection) in rats. Both monodisperse (narrow size distribution) and polydisperse PLHMGA-ms were prepared with volume weight mean diameter of 34 and 17 µm, respectively. Mono and polydisperse PLHMGA-ms showed good cytocompatibility properties upon 72 h incubation with the cells (100 µg microspheres/600 µL/cell line). A mild foreign body reaction was seen shortly after subcutaneous injection (20 mg per pocket) of both mono and polydisperse PLHMGA-ms with the presence of mainly macrophages, few foreign body giant cells and myofibroblasts. This transient inflammatory reaction diminished within 28 days after injection, the time-point at which the microspheres were degraded. The degradation profile is comparable to the in vitro degradation time of the microspheres (i.e., within 35 days) when incubated at 37 °C in phosphate buffered saline. Subcapsular renal injection of monodisperse PLHMGA-ms (10 mg) in rats was characterized with similar inflammatory patterns compared to the subcutaneous injection. No cortical damage was observed in the injected kidneys. In conclusion, this study demonstrates that PLHMGA-ms are well tolerated after in vivo injection in rats. This makes them a good candidate for controlled delivery systems of low-molecular weight drugs as well as protein biopharmaceuticals.


Subject(s)
Biocompatible Materials/administration & dosage , Drug Carriers/administration & dosage , Kidney/drug effects , Microspheres , Polyesters/administration & dosage , Administration, Cutaneous , Animals , Biocompatible Materials/adverse effects , Cell Line , Cell Proliferation/drug effects , Drug Carriers/adverse effects , Drug Stability , Foreign-Body Reaction/chemically induced , Foreign-Body Reaction/pathology , Kidney/pathology , Male , Polyesters/adverse effects , Rats
13.
J Mech Behav Biomed Mater ; 34: 313-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24704968

ABSTRACT

Biodegradable polymeric microspheres are interesting drug delivery vehicles for site-specific sustained release of drugs used in treatment of osteoarthritis. We study the nano-mechanical properties of microspheres composed of hydrophilic multi-block copolymers, because the release profile of the microspheres may be dependent on the mechanical interactions between the host tissues and the microspheres that aim to incorporate between the cartilage surfaces. Three different sizes of monodisperse microspheres, namely 5, 15, and 30µm, were tested in both dry and hydrated (swollen) states. Atomic force microscopy was used for measuring nanoindentation-based force-displacement curves that were later used for calculating the Young׳s moduli using the Hertz׳s contact theory. For every microsphere size and condition, the measurements were repeated 400-500 times at different surface locations and the histograms of the Young׳s modulus were plotted. The mean Young׳s modulus of 5, 15, and 30µm microspheres were respectively 56.1±71.1 (mean±SD), 94.6±103.4, and 57.6±58.6MPa under dry conditions and 226.4±54.2, 334.5±128.7, and 342.5±136.8kPa in the swollen state. The histograms were not represented well by the average Young׳s modulus and showed three distinct peaks in the dry state and one distinct peak in the swollen state. The peaks under dry conditions are associated with the different parts of the co-polymeric material at the nano-scale. The measured mechanical properties of swollen microspheres are within the range of the nano-scale properties of cartilage, which could favor integration of the microspheres with the host tissue.


Subject(s)
Drug Carriers/chemistry , Materials Testing , Mechanical Phenomena , Microspheres , Nanotechnology , Polymers/chemistry , Elastic Modulus
SELECTION OF CITATIONS
SEARCH DETAIL