Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Math Biosci Eng ; 21(4): 5227-5249, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38872534

ABSTRACT

Mosquito-borne diseases are threatening half of the world's population. To prevent the spread of malaria, dengue fever, or other mosquito-borne diseases, a new disease control strategy is to reduce or eradicate the wild mosquito population by releasing sterile mosquitoes. To study the effects of sterile insect technique on mosquito populations, we developed a mathematical model of constant release of sterile Aedes aegypti mosquitoes with strong and weak Allee effect and considered interspecific competition with Anopheles mosquitoes. We calculated multiple release thresholds and investigated the dynamical behavior of this model. In order to get closer to reality, an impulsive differential equation model was also introduced to study mosquito suppression dynamics under the strategy of releasing $ c $ sterile male mosquitoes at each interval time $ T $. Finally, the relationship between the releasing amount or the waiting period and the number of days required to suppress mosquitoes was illustrated by numerical simulations.


Subject(s)
Aedes , Anopheles , Computer Simulation , Mosquito Control , Mosquito Vectors , Population Dynamics , Animals , Mosquito Control/methods , Male , Anopheles/physiology , Female , Models, Biological , Dengue/prevention & control , Dengue/transmission , Dengue/epidemiology , Malaria/prevention & control , Malaria/transmission , Humans , Culicidae , Competitive Behavior
2.
Med J Armed Forces India ; 80(3): 287-293, 2024.
Article in English | MEDLINE | ID: mdl-38799996

ABSTRACT

Background: Behavior Change Communication (BCC) is evidence-based, theoretically supported and utilizes all opportunities for communication. Evidence reports BCC as a relevant tool for averting and controlling many forms of public health challenges. Through schools, many countries have shown health improvements via students and the community's exposure to behavior change messages. The study was planned with an aim of evaluating the effectiveness of mosquito-borne disease control measures implementation through BCC to adolescent school students in a Cantonment area, in North India. Methods: The present study was undertaken as a quasi-experimental study from April 2019 to March 2020. Of the 334 students enrolled in the school as per eligibility criteria, 315 were available during the initial assessment, and 288 were available throughout the study. For the evaluation of effectiveness of the BCC at household level, 200 households (100 intervention and 100 control) were selected. Students' knowledge about mosquito-borne diseases was the primary outcome measure. The difference in proportions was tested using the chi-square test. The difference in proportions for paired samples was tested using Mc Nemar's test. Results: Proportion of students who gave correct responses significantly increased after intervention in post-test as compared to pre-test for most of the knowledge-related questions. The proportion of households with the availability of mosquito nets and self-reported use of mosquito nets was significantly high in intervention group as compared to control group post-intervention. Conclusion: BCC in the form of different intervention programs to adolescent school children was effective in improving the knowledge and attitude toward mosquito-borne diseases and also ensured less mosquito-genic environment in households.

3.
Insect Sci ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783627

ABSTRACT

Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.

4.
Int J Health Geogr ; 23(1): 13, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764024

ABSTRACT

BACKGROUND: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas. Supervised classification approaches have been largely used to automatically detect vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies. RESULTS: We tested the identification of two land cover classes of interest: water bodies and human settlements, using different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We employed manually placed point prompts and text prompts associated with specific classes of interest to guide the image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, resulting in varying performance. CONCLUSIONS: Recent models such as SAM can potentially assist manual digitalization of imagery by vector control programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are necessary, especially for applications in rural areas.


Subject(s)
Climate Change , Humans , Animals , Malaria/epidemiology , Mosquito Vectors , Remote Sensing Technology/methods , Geographic Information Systems , Image Processing, Computer-Assisted/methods
5.
Acta Trop ; 256: 107276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821146

ABSTRACT

Culex gelidus (Diptera: Culicidae), an important vector of the Japanese encephalitis virus (JEV), contributes to human viral encephalitis in many Asian countries, including Thailand. This study represents the first investigation of the demographic patterns of Cx. gelidus populations in Thailand using cytochrome c oxidase subunit I (COI) gene analysis and wing geometric morphometrics (GM). Mosquitoes were collected from 10 provinces across six regions of Thailand in 2022. Analysis of the COI sequences (n = 182) indicated high haplotype diversity (0.882) and low nucleotide diversity (0.006), with 72 haplotypes identified. The haplotype network demonstrated no profound splits among the geographic populations. Neutral tests, including Tajima's D and Fu's Fs, displayed negative values, with a significant result observed for Fu's Fs (-33.048, p < 0.05). The mismatch distribution analysis indicated that the population does not statistically deviate from a model of sudden population expansion (SSD = 0.010, p > 0.05; Rg = 0.022, p > 0.05). The estimations suggest that the Cx. gelidus population in Thailand began its expansion approximately between 459,243 and 707,011 years ago. The Mantel test showed no significant relationship between genetic and geographic distances (r = 0.048, p > 0.05). Significant phenotypic differences (based on wing shape) were observed among most populations. Additionally, in this study, we found no significant relationships between phenotypic and genetic distances (r = 0.250, p > 0.05). Understanding the genetic and morphological dynamics of Cx. gelidus is vital for developing targeted surveillance and vector control measures. This knowledge will also help to predict how future environmental changes might affect these populations, thereby informing long-term vector management strategies.


Subject(s)
Culex , Electron Transport Complex IV , Mosquito Vectors , Wings, Animal , Animals , Thailand , Culex/genetics , Culex/virology , Culex/anatomy & histology , Electron Transport Complex IV/genetics , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Mosquito Vectors/virology , Wings, Animal/anatomy & histology , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes , Female , Encephalitis, Japanese/virology , Encephalitis Virus, Japanese/genetics , Male , Phylogeny
6.
Article in English | MEDLINE | ID: mdl-38717107

ABSTRACT

Background: Aedes aegypti, is the primary vector of dengue, Chikungunya, Zika, and yellow fever viruses. Both natural and human-impacted landscapes have selective pressures on Ae. aegypti, resulting in strong genomic structure even within close geographical distances. Materials and Methods: We assess the genetic structure of this medically important mosquito species at the northern leading edge of their distribution in Southwestern USA. Ae. aegypti were collected during 2017 in the urban communities of El Paso and Sparks, Texas (USA) and in the city of Ciudad Juárez, Mexico. Results: Thousands of nuclear loci were sequenced across 260 captured Ae. aegypti. First, we recovered the genetic structure of Ae. aegypti following geography, with all four major collection communities being genetically distinct. Importantly, we found population structure and genetic diversity that suggest rapid expansion through active-short distance dispersals, with Anapra being the likely source for the others. Next, tests of selection recovered eight functional genes across six outliers: calmodulin with olfactory receptor function; the protein superfamily C-type lectin with function in mosquito immune system and development; and TATA box binding protein with function in gene regulation. Conclusion: Despite these populations being documented in the early 2000s, we find that selective pressures on specific genes have already occurred and likely facilitate Ae. aegypti range expansion.

7.
Front Vet Sci ; 11: 1364740, 2024.
Article in English | MEDLINE | ID: mdl-38601912

ABSTRACT

Background: Mosquito-borne diseases pose serious public health threats in Zhejiang Province, China, and vector control is believed to be the primary method for reducing transmission. Due to severe resistance problems, effective and sustainable methods without chemical insecticides are urgently required to control mosquito vectors. Attractive toxic sugar baits (ATSB) are newly developed methods to control mosquitoes in recent decades with the core element sugar bait, which was invented according to the sugar-feeding behavior of mosquitoes. In this study, we developed a Novel Sugar Bait Device (NSBD) trap by combining sugar bait and physical adhesive capture technology. The study aimed to evaluate the effect of the NSBD trap on controlling mosquitoes in residential environments and to identify the optimal sugar solution concentration in the sugar bait of the NSBD for real use. Methods: Four residential villages in Ningbo City with similar geographic environments and mosquito densities were selected for field trials in 2022. One village (site 1) was designated as the control group, and three villages (sites 2-4) served as the test groups to assess the effectiveness of NSBD traps with different sugar solution concentrations (6, 8, and 10%) in the sugar bait. Larval and adult mosquito densities were monitored monthly before and semi-monthly after the trials using the CDC light trap and larval pipette method. Results: Before the trials, we monitored mosquito density for 3 months to confirm the baseline mosquito density among the four sites, and no statistical differences in adult and larval mosquitoes were found (adult, F = 3.047, p > 0.05; larvae, F = 0.436, p > 0.05). After the trials, all NCBD traps effectively controlled larval and adult mosquito densities, with the highest standard decrease rates of larval and adult mosquito densities at 57.80 and 86.31%, respectively, observed in site 4. The most suitable sugar solution concentration in the sugar bait was 10%. Conclusion: NSBD traps effectively controlled mosquitoes in residential environments during field trials. Without the use of insecticides, this may be a promising choice for mosquito vector control to prevent mosquito-borne diseases.

8.
Med Vet Entomol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641881

ABSTRACT

Insects geographically separated into island and mainland populations often exhibit phenotypic variations, a phenomenon known as insular conditions. These conditions can lead to rapid evolutionary changes that affect the morphological characteristics of mosquito vectors. Nevertheless, studies that specifically examine phenotype differences between island and mainland mosquito populations have been limited. In this study, wing variation in size and shape was investigated using the geometric morphometric (GM) technique in two dominant mosquito vectors, Aedes albopictus and Armigeres subalbatus, in the Ranong and Trat archipelagos of Thailand. Significant differences in average wing centroid size (CS) were found in 6 out of 15 population pairs for Ae. albopictus (p < 0.05) and in 5 population pairs for Ar. subalbatus (p < 0.05). After removing the allometric effect, canonical variate analyses (CVA) based on wing shape analysis revealed overlap across all populations for both Ae. albopictus and Ar. subalbatus. However, the statistical analysis indicated that Ar. subalbatus exhibited wing shape differences across all populations (p < 0.05), and most Ae. albopictus populations also displayed distinct wing shapes (p < 0.05), except for the populations from Chang Island and the mainland of Ranong, which showed no significant differences (p > 0.05). These findings enhance our understanding of mosquito adaptability in island regions and provide valuable data for the surveillance and monitoring of vector evolution.

9.
J Travel Med ; 31(4)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38498330

ABSTRACT

BACKGROUND: The effect of clothing colour on the biting rates of different vector mosquito species is not well understood. Studies under tropical field conditions are lacking. This study aimed to determine the influence of clothing colours on mosquito biting rates in rural and suburban settings in West Africa. METHODS: We performed a simulated field study in a suburban and a rural site in Mali using Mosquito-Magnet traps utilizing CO2 and other attractants, which were covered with black, white, and black/white striped textile sheets covers. These targets operated continuously for 10 consecutive days with bright nights (around full moon) and 10 consecutive days with dark nights (around new moon). Trapped mosquitoes were collected and catch rates counted hourly. Mosquitoes were morphologically identified to the species complex level (Anopheles gambiae s.l. and Culex pipiens s.l.) or species level (Aedes aegypti). A subset of Anopheles specimens were further identified by molecular methods. RESULTS: Under bright-night conditions, An. gambiae s.l. was significantly more attracted to black targets than to white and striped targets; during dark nights, no target preference was noted. During bright nights, Cx. pipiens s.l. was significantly more attracted to black and striped targets than to white targets; a similar trend was noted during dark nights (not significant). For day-active Ae. aegypti, striped targets were more attractive than the other targets and black were more attractive than white targets. CONCLUSIONS: The study firstly demonstrated that under field conditions in Mali, West Africa, mosquito catch rates were influenced by different clothing colours, depending on mosquito species and light conditions. Overall, light colours were least attractive to host-seeking mosquitoes. Using white or other light-coloured clothing can potentially reduce bite exposure and risk of disease transmission in endemic tropical regions.


Subject(s)
Anopheles , Color , Mosquito Vectors , Animals , Mali , Mosquito Vectors/physiology , Humans , Anopheles/physiology , Culex/physiology , Clothing , Textiles , Insect Bites and Stings/prevention & control , Mosquito Control/methods , Feeding Behavior , Aedes/physiology , Culicidae/physiology
10.
Parasite ; 31: 17, 2024.
Article in English | MEDLINE | ID: mdl-38530210

ABSTRACT

The sterile insect technique (SIT) involves releasing large numbers of sterile males to outcompete wild males in mating with females, leading to a decline in pest populations. In the current study, we conducted a suppression trial in Greece against the invasive dengue vector mosquito Aedes albopictus (Skuse) through the weekly release of sterile males for 22 weeks from June to September 2019. Our approach included the long-distance transport of sterile mosquitoes, and their release at a density of 2,547 ± 159 sterile males per hectare per week as part of an area-wide integrated pest management strategy (AW-IPM). The repeated releases of sterile males resulted in a gradual reduction in egg density, reaching 78% from mid-June to early September. This reduction remained between 70% and 78% for four weeks after the end of the releases. Additionally, in the SIT intervention area, the ovitrap index, representing the percentage of traps containing eggs, remained lower throughout the trial than in the control area. This trial represents a significant advance in the field of mosquito control, as it explores the viability and efficacy of producing and transporting sterile males from a distant facility to the release area. Our results provide valuable insights for future SIT programmes targeting Ae. Albopictus, and the methodology we employed can serve as a starting point for developing more refined and effective release protocols, including the transportation of sterile males over long distances from production units to intervention areas.


Title: Essai sur le terrain de la Technique de l'Insecte Stérile (TIS) ciblant la suppression d'Aedes albopictus en Grèce. Abstract: La technique de l'insecte stérile (TIS) consiste à libérer un grand nombre de mâles stériles pour supplanter les mâles sauvages lors de l'accouplement avec les femelles, entraînant ainsi un déclin des populations de nuisibles. Dans la présente étude, nous avons mené un essai de suppression en Grèce contre le moustique vecteur invasif de la dengue, Aedes albopictus (Skuse), par le biais de la libération hebdomadaire de mâles stériles pendant 22 semaines de juin à septembre 2019. Notre approche comprenait le transport sur de longues distances de moustiques stériles, et leur lâcher à une densité de 2 547 ± 159 mâles stériles par hectare et par semaine dans le cadre d'une stratégie de lutte intégrée contre les nuisibles à l'échelle de la zone (AW-IPM). Les lâchers répétés de mâles stériles ont entraîné une réduction progressive de la densité des œufs, atteignant 78 % de la mi-juin au début septembre. Cette réduction est restée entre 70 % et 78 % pendant quatre semaines après la fin des lâchers. De plus, dans la zone d'intervention de la TIS, l'indice d'oviposition, représentant le pourcentage de pièges contenant des œufs, est resté plus faible que dans la zone témoin tout au long de l'essai. Cet essai représente une avancée significative dans le domaine de la lutte contre les moustiques, car il explore la viabilité et l'efficacité de la production et du transport de mâles stériles depuis une installation éloignée vers la zone de lâcher. Nos résultats fournissent des informations précieuses pour les futurs programmes de TIS ciblant Ae. albopictus et la méthodologie que nous avons utilisée pourra servir de point de départ pour développer des protocoles de libération plus raffinés et plus efficaces, y compris le transport de mâles stériles sur de longues distances depuis les unités de production jusqu'aux zones d'intervention.


Subject(s)
Aedes , Insecta , Animals , Female , Male , Greece , Mosquito Control
11.
Acta Trop ; 253: 107171, 2024 May.
Article in English | MEDLINE | ID: mdl-38447704

ABSTRACT

Armigeres subalbatus (Diptera: Culicidae) is a mosquito species of significant medical and veterinary importance. It is widely distributed across Southeast and East Asia and is commonly found throughout Thailand. This study assessed the genetic diversity and population structure of Ar. subalbatus in Thailand using the cytochrome c oxidase subunit I (COI) gene sequences. Additionally, wing shape variations among these populations were examined using geometric morphometrics (GM). Our results demonstrated that the overall haplotype diversity (Hd) was 0.634, and the nucleotide diversity (π) was 0.0019. Significant negative values in neutrality tests (p < 0.05) indicate that the Ar. subalbatus populations in Thailand are undergoing a phase of expansion following a bottleneck event. The mismatch distribution test suggests that the populations may have started expanding approximately 16,678 years ago. Pairwise genetic differentiation among the 12 populations based on Fst revealed significant differences in 32 pairs (p < 0.05), with the degree of differentiation ranging from 0.000 to 0.419. The GM analysis of wing shape also indicated significant differences in nearly all pairs (p < 0.05), except for between populations from Nakhon Pathom and Samut Songkhram, and between those from Chiang Mai and Mae Hong Son, suggesting no significant difference due to their similar environmental settings. These findings enhance our understanding of the population structure and phenotypic adaptations of mosquito vectors, providing vital insights for the formulation of more efficacious vector control strategies.


Subject(s)
Culicidae , Animals , Culicidae/genetics , Thailand , Mosquito Vectors/genetics , Genetics, Population , Asia, Eastern
12.
Infect Dis Model ; 9(1): 278-297, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38328278

ABSTRACT

In Canada, the periodic circulation of West Nile Virus (WNV) is difficult to predict and, beyond climatic factors, appears to be related to the migratory movements of infected birds from the southern United States. This hypothesis has not yet been explored in a spatially distributed model. The main objective of this work was to develop a spatially explicit dynamic model for the transmission of WNV in Canada, that allows us to explore non-climate related hypotheses associated with WNV transmission. A Cellular Automata (CA) approach for multiple hosts (birds and humans) is used for a test region in eastern Ontario, Canada. The tool is designed to explore the role of host and vector spatial heterogeneity, host migration, and vector feeding preferences. We developed a spatialized compartmental SEIRDS-SEI model for WNV transmission with a study region divided into 4 km2 rectangular cells. We used 2010-2021 bird data from the eBird project and 2010-2019 mosquito data collected by Ontario Public Health to mimic bird and mosquito seasonal variation. We considered heterogeneous bird densities (high and low suitability areas) and homogeneous mosquito and human densities. In high suitability areas for birds, we identified 5 entry points for WNV-infected birds. We compared our simulations with pools of WNV-infected field collected mosquitoes. Simulations and sensitivity analyses were performed using MATLAB software. The results showed good correspondence between simulated and observed epidemics, supporting the validity of our model assumptions and calibration. Sensitivity analysis showed that a 5% increase or decrease in each parameter of our model except for the biting rate of bird by mosquito (c(B,M)) and mosquito natural mortality rate (dM), had a very limited effect on the total number of cases (newly infected birds and humans), prevalence peak, or date of occurrence. We demonstrate the utility of the CA approach for studying WNV transmission in a heterogeneous landscape with multiple hosts.

13.
Parasitol Res ; 123(2): 130, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340244

ABSTRACT

The Asian tiger mosquito, Aedes albopictus (Skuse), is an invasive species native to Southeast Asia. This insect, which is an important vector of arbovirus such as dengue, Zika, and chikungunya, has spread rapidly to several parts of the world over the last few decades. This study employed a bibliometric approach to explore, for the first time, Ae. albopictus research activity and output in Europe. We used the Web of Science Core Collection data source to characterize the current scientific research. A total of 903 publications from 1973 to 2022 were retrieved. We also provided a comprehensive analysis by year of publication; distribution by most productive European countries, institutions, and authors; collaboration networks; research topics; most productive journals; and most cited publications. Results showed a notable increase in the number of studies after the chikungunya virus outbreak in Northeast Italy in 2007. More than 60% of these publications across the entire European continent originated from France and Italy. Research output related to 'population and community ecology' topics was significantly high. The most common type of collaboration was national, which occurred between institutions in the same European country. By providing an overview of Ae. albopictus research in Europe, this work contributes to upcoming debates, decision-making, planning on research and development, and public health strategies on the continent and worldwide.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Introduced Species , Mosquito Vectors , Europe
14.
Pathogens ; 13(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392871

ABSTRACT

WNV and USUV are closely related epornitic flaviviruses transmitted by Culex mosquitoes which can cause febrile and neurodegenerative disease in humans. The impact of both viruses on public health has increased in the recent decades. AIM: The aim of the study was to evaluate the seroprevalence of WNV and USUV in hospitalized patients from eastern Romania who did not show symptoms corresponding to the case definition. METHODS: Human blood samples from the hospitalized patients were collected in 2015 and from April to September 2019 in Iasi County, Romania. The samples were screened by ELISA for anti-WNV IgG, IgM, and anti-USUV IgG antibodies. RESULTS: A cumulative seroprevalence of 3.4% was recorded for anti-WNV IgG antibodies and 9.1% for anti-WNV IgM. No sample was positive for anti-USUV antibodies. CONCLUSION: The cumulative seroprevalence observed provides support for the consideration of WNV as being endemic in the east of Romania. The absence of anti-USUV antibodies may be related to cross-reactivity and cohort size, thus, USUV should be considered in clinical practice and become an objective for active surveillance in Romania.

15.
Vector Borne Zoonotic Dis ; 24(5): 249-264, 2024 May.
Article in English | MEDLINE | ID: mdl-38206763

ABSTRACT

Background: Mosquito-borne orthobunyaviruses in Canada are a growing public health concern. Orthobunyaviral diseases are commonly underdiagnosed and in Canada, likely underreported as surveillance is passive. No vaccines or specific treatments exist for these disease agents. Further, climate change is facilitating habitat expansion for relevant reservoirs and vectors, and it is likely that the majority of the Canadian population is susceptible to these viruses. Methods: A scoping review was conducted to describe the current state of knowledge on orthobunyavirus epidemiology in Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guideline was used. Literature searches were conducted in six databases and in gray literature. The epidemiology of orthobunyaviruses was characterized for studies focusing on host species, including spatiotemporal patterns, risk factors, and climate change impact. Results: A total of 172 relevant studies were identified from 1734 citations from which 95 addressed host species, including humans, wildlife, and domestic animals including livestock. The orthobunyaviruses-Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV)-were identified, and prevalence was widespread across vertebrate species. CVV, JCV, and SHV were detected across Canada and the United States. LACV was reported only in the United States, predominantly the Mid-Atlantic and Appalachian regions. Disease varied by orthobunyavirus and was associated with age, environment, preexisting compromised immune systems, or livestock breeding schedule. Conclusion: Knowledge gaps included seroprevalence data in Canada, risk factor analyses, particularly for livestock, and disease projections in the context of climate change. Additional surveillance and mitigation strategies, especially accounting for climate change, are needed to guide future public health efforts to prevent orthobunyavirus exposure and disease.


Subject(s)
Animals, Wild , Orthobunyavirus , Animals , Animals, Wild/virology , Canada/epidemiology , Humans , Orthobunyavirus/isolation & purification , Animals, Domestic/virology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Bunyaviridae Infections/veterinary
16.
Insects ; 15(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38249051

ABSTRACT

Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. An average of 2.4 mosquitos per trap/night were captured. Five mosquito species potentially causing MBDs, including Culex pipiens biotypes, were found in the zoo. The sympatric occurrence of Culex pipiens biotypes represents a risk factor for the epizootic transmission of West Nile virus and Usutu virus. The mosquito occurrence followed the expected seasonality, with the maximum densities during summer months. However, mosquito activity was detected in winter months in low numbers. The minimum temperature and the relative humidity (RH) on the day of capture showed a positive effect on Culex pipiens abundance. Contrary, the RH the week before capture and the average precipitation the week of capture had a negative effect. No invasive species were identified, nor have flaviviruses been detected in the mosquitoes. The implementation of biosecurity measures regarding the hygiene of the premises and the strict control of all the animals entering the zoo can justify the low prevalence of mosquitoes and the absence of flavivirus-infected mosquitoes.

17.
Acta Trop ; 249: 107089, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043672

ABSTRACT

Mosquitoes (Diptera: Culicidae) comprise over 3500 global species, primarily in tropical regions, where the females act as disease vectors. Thus, identifying medically significant species is vital. In this context, Wing Geometric Morphometry (WGM) emerges as a precise and accessible method, excelling in species differentiation through mathematical approaches. Computational technologies and Artificial Intelligence (AI) promise to overcome WGM challenges, supporting mosquito identification. AI explores computers' thinking capacity, originating in the 1950s. Machine Learning (ML) arose in the 1980s as a subfield of AI, and deep Learning (DL) characterizes ML's subcategory, featuring hierarchical data processing layers. DL relies on data volume and layer adjustments. Over the past decade, AI demonstrated potential in mosquito identification. Various studies employed optical sensors, and Convolutional Neural Networks (CNNs) for mosquito identification, achieving average accuracy rates between 84 % and 93 %. Furthermore, larval Aedes identification reached accuracy rates of 92 % to 94 % using CNNs. DL models such as ResNet50 and VGG16 achieved up to 95 % accuracy in mosquito identification. Applying CNNs to georeference mosquito photos showed promising results. AI algorithms automated landmark detection in various insects' wings with repeatability rates exceeding 90 %. Companies have developed wing landmark detection algorithms, marking significant advancements in the field. In this review, we discuss how AI and WGM are being combined to identify mosquito species, offering benefits in monitoring and controlling mosquito populations.


Subject(s)
Aedes , Artificial Intelligence , Animals , Female , Mosquito Vectors , Neural Networks, Computer , Machine Learning
18.
JMIR Res Protoc ; 12: e50985, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079215

ABSTRACT

BACKGROUND: Globally, among all the vector-borne diseases, mosquito-borne diseases are responsible for a substantial number of cases and deaths and amount to an economic cost of US $12 billion per year. However, there is a dearth of systematic research conducted on the economic burden of mosquito-borne diseases. To address the lack of comprehensive information on this topic, a systematic review will be conducted to synthesize evidence for informing targeted policies and strategies addressing this growing burden and for better financial protection of households. OBJECTIVE: The systematic review aims to review the economic burden of mosquito-borne diseases in low- and middle-income countries (LMICs). The review estimates the total cost, which is the compilation of both the direct costs and indirect costs. Additionally, it reports cost estimates per disease, country, and patient. The review outcome will also discuss the impact of the economic burden in terms of out-of-pocket expenditure, catastrophic health expenditure, impoverishment, and gross domestic product impact due to mosquito-borne diseases in LMICs. METHODS: Systematic searches will be conducted in PubMed (MEDLINE), Ovid Embase, Scopus, the cumulative index of nursing and allied health literacy, and Cochrane CENTRAL. Additionally, websites of the World Bank, World Health Organization, and Asian Development Bank as well as grey literature (eg, Malaria No More and the Ministry of Health websites) will be searched to gather comprehensive information on the topic and identify studies published in the English language. The titles and abstracts will be independently screened by 2 reviewers, followed by a full-text review against the inclusion criteria. Disagreements will be resolved through discussion with a third author. The methodological reporting quality of the studies will be evaluated using the Larg and Moss checklist, Cochrane risk-of-bias tool for randomized trials, and the Consensus on Health Economic Criteria. Data will be extracted using a standardized data extraction form. RESULTS: The protocol was registered in PROSPERO (CRD42023427111) prior to the initiation of the search strategy. The review is currently ongoing and will synthesize information from the identified studies through a process involving structured screening, data extraction, and critical appraisal in the form of tables and a narrative summary of studies reporting the economic burden incurred due to mosquito-borne diseases in LMICs. CONCLUSIONS: This review seeks to report the economic burden of mosquito-borne diseases. It will act as evidence for policymakers to prioritize their decisions regarding containing the prevalence of mosquito-borne diseases and the means to lowering the incidence of diseases spread by mosquitoes. TRIAL REGISTRATION: PROSPERO CRD42023427111; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=427111. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/50985.

19.
Front Microbiol ; 14: 1267832, 2023.
Article in English | MEDLINE | ID: mdl-37901801

ABSTRACT

Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, Zika fever, and filariasis have the greatest health and economic impact. These mosquito-borne diseases are a major cause of morbidity and mortality in tropical and sub-tropical areas. Due to the lack of effective vector containment strategies, the prevalence and severity of these diseases are increasing in endemic regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia represents a promising new bio-control strategy. Wild-infected mosquitoes had been developing cytoplasmic incompatibility (CI), phenotypic alterations, and nutrition competition with pathogens. These reduce adult vector lifespan, interfere with reproduction, inhibit other pathogen growth in the vector, and increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can also establish stable infections through trans-infection and have the advantage of adaptability through pathogen defense, thereby selectively infecting uninfected mosquitoes and spreading to the entire population. This review aimed to evaluate the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially relevant articles. We used keywords: Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or in combination during the literature search. Data were extracted from 56 articles' texts, figures, and tables of the included article.

20.
Insects ; 14(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37754696

ABSTRACT

Urban areas are often populated by specific species of insects, some colorful and appealing, such as ladybugs and butterflies, and others irritating as nuisance bitters or as vectors of pathogens of public health importance. Mosquitoes in urban areas often utilize habitats adjacent to human residences, while phytophagous insect species such as stink bugs often colonize ornamental plants and utilize human-made structures including houses as overwintering shelters. This article discusses the early detection and the current distribution of two invasive mosquito species, Aedes albopictus Skuse 1894 and Ae. japonicus (Theobald 1901), in Serbia, introduced in 2009 and 2018, respectively. From the first findings until today, regular monitoring has been carried out and the establishment of both species in the newly invaded areas has been confirmed. Both species can become nuisance species, especially at high population densities, but more importantly, they are capable of transmitting a wide variety of arboviruses of public health importance. This article also discusses two invasive stink bug species Halyomorpha halys Stål 1855 and Nezara viridula Linnaeus 1758, introduced in Serbia in 2015 and 2008, respectively. These two stink bug species have also been monitored, and the establishment of their populations in the country has been confirmed. Both species have caused damage to a wide range of crops and ornamental plants and sometimes become nuisance pests in urban areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...