Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroeng Rehabil ; 21(1): 128, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085954

ABSTRACT

BACKGROUND: Systems that capture motion under laboratory conditions limit validity in real-world environments. Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of "real" human movement. IMU data must be validated in each application to interpret with clinical applicability; this is particularly true for diverse populations. Our IMU analysis method builds on the OpenSim IMU Inverse Kinematics toolkit integrating the Versatile Quaternion-based Filter and incorporates realistic constraints to the underlying biomechanical model. We validate our processing method against the reference standard optical motion capture in a case report with participants with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant (POI) and without amputation walking over level ground. We hypothesis that by using this novel pipeline, we can validate IMU motion capture data, to a clinically acceptable degree. RESULTS: Average RMSE (across all joints) between the two systems from the participant with a unilateral transfemoral amputation (TFA) on the amputated and the intact sides were 2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) respectively. Equivalent results in the non-amputated participant were 2.26° (IQR = 1.08°). Joint level average RMSE between the two systems from the TFA ranged from 1.66° to 3.82° and from 1.21° to 5.46° in the non-amputated participant. In plane average RMSE between the two systems from the TFA ranged from 2.17° (coronal) to 3.91° (sagittal) and from 1.96° (transverse) to 2.32° (sagittal) in the non-amputated participant. Coefficients of Multiple Correlation (CMC) results between the two systems in the TFA ranged from 0.74 to > 0.99 and from 0.72 to > 0.99 in the non-amputated participant and resulted in 'excellent' similarity in each data set average, in every plane and at all joint levels. Normalized RMSE between the two systems from the TFA ranged from 3.40% (knee level) to 54.54% (pelvis level) and from 2.18% to 36.01% in the non-amputated participant. CONCLUSIONS: We offer a modular processing pipeline that enables the addition of extra layers, facilitates changes to the underlying biomechanical model, and can accept raw IMU data from any vendor. We successfully validate the pipeline using data, for the first time, from a TFA participant using a POI and have proved our hypothesis.


Subject(s)
Amputation, Surgical , Artificial Limbs , Humans , Biomechanical Phenomena , Amputation, Surgical/rehabilitation , Femur/surgery , Osseointegration/physiology , Male , Proof of Concept Study , Amputees/rehabilitation , Walking/physiology , Adult , Bone-Anchored Prosthesis
2.
Sports Biomech ; : 1-16, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35786382

ABSTRACT

Wearable inertial sensors (WIS) facilitate the preservation of the athlete-environment relationship by allowing measurement outside the laboratory. WIS systems should be validated for team sports movements before they are used in sports performance and injury prevention research. The aim of the present study was to investigate the concurrent validity of a wearable inertial sensor system in quantifying joint kinematics during team sport movements. Ten recreationally active participants performed change-of-direction (single-leg deceleration and sidestep cut) and jump-landing (single-leg hop, single-leg crossover hop, and double-leg vertical jump) tasks while motion was recorded by nine inertial sensors (Noraxon MyoMotion, Noraxon USA Inc.) and eight motion capture cameras (Vicon Motion Systems Ltd). Validity of lower-extremity joint kinematics was assessed using measures of agreement (cross-correlation: XCORR) and error (root mean square deviation; and amplitude difference). Excellent agreement (XCORR >0.88) was found for sagittal plane kinematics in all joints and tasks. Highly variable agreement was found for frontal and transverse plane kinematics at the hip and ankle. Errors were relatively high in all planes. In conclusion, the WIS system provides valid estimates of sagittal plane joint kinematics in team sport movements. However, researchers should correct for offsets when comparing absolute joint angles between systems.

3.
Sensors (Basel) ; 21(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810610

ABSTRACT

The aim of the present study was to quantify joint kinematics through a wearable sensor system in multidirectional high-speed complex movements used in a protocol for rehabilitation and return to sport assessment after Anterior Cruciate Ligament (ACL) injury, and to validate it against a gold standard optoelectronic marker-based system. Thirty-four healthy athletes were evaluated through a full-body wearable sensor (MTw Awinda, Xsens) and a marker-based optoelectronic (Vicon Nexus, Vicon) system during the execution of three tasks: drop jump, forward sprint, and 90° change of direction. Clinically relevant joint angles of lower limbs and trunk were compared through Pearson's correlation coefficient (r), and the Coefficient of Multiple Correlation (CMC). An excellent agreement (r > 0.94, CMC > 0.96) was found for knee and hip sagittal plane kinematics in all the movements. A fair-to-excellent agreement was found for frontal (r 0.55-0.96, CMC 0.63-0.96) and transverse (r 0.45-0.84, CMC 0.59-0.90) plane kinematics. Movement complexity slightly affected the agreement between the systems. The system based on wearable sensors showed fair-to-excellent concurrent validity in the evaluation of the specific joint parameters commonly used in rehabilitation and return to sport assessment after ACL injury for complex movements. The ACL professionals could benefit from full-body wearable technology in the on-field rehabilitation of athletes.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Wearable Electronic Devices , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/diagnosis , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Humans , Knee Joint/surgery , Return to Sport
SELECTION OF CITATIONS
SEARCH DETAIL