Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Cells ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120309

ABSTRACT

Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1-4), little is known about the more divergent Group II NMEs (NME5-9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members.


Subject(s)
Mitochondria , Humans , Animals , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NM23 Nucleoside Diphosphate Kinases/metabolism , NM23 Nucleoside Diphosphate Kinases/genetics , Nucleoside Diphosphate Kinase D/metabolism , Nucleoside Diphosphate Kinase D/genetics
2.
Int Rev Cell Mol Biol ; 386: 223-247, 2024.
Article in English | MEDLINE | ID: mdl-38782500

ABSTRACT

Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.


Subject(s)
Immunity, Innate , Inflammation , Mitochondria , Neoplasms , Signal Transduction , Humans , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Animals , Mitochondria/metabolism , Inflammation/pathology , Inflammation/metabolism , Inflammation/immunology , Drug Resistance, Neoplasm , Immune Evasion , Tumor Microenvironment/immunology
3.
Front Cell Dev Biol ; 12: 1346778, 2024.
Article in English | MEDLINE | ID: mdl-38808224

ABSTRACT

Background: Mitochondrial health has gained attention in a number of diseases, both as an indicator of disease state and as a potential therapeutic target. The quality and amount of mitochondrial DNA (mtDNA) and RNA (mtRNA) can be important indicators of mitochondrial and cell health, but are difficult to measure in complex tissues. Methods: mtDNA and mtRNA in zebrafish retina samples were fluorescently labeled using RNAscope™ in situ hybridization, then mitochondria were stained using immunohistochemistry. Pretreatment with RNase was used for validation. Confocal images were collected and analyzed, and relative amounts of mtDNA and mtRNA were reported. Findings regarding mtDNA were confirmed using qPCR. Results: Signals from probes detecting mtDNA and mtRNA were localized to mitochondria, and were differentially sensitive to RNase. This labeling strategy allows for quantification of relative mtDNA and mtRNA levels in individual cells. As a demonstration of the method in a complex tissue, single photoreceptors in zebrafish retina were analyzed for mtDNA and mtRNA content. An increase in mtRNA but not mtDNA coincides with proliferation of mitochondria at night in cones. A similar trend was measured in rods. Discussion: Mitochondrial gene expression is an important component of cell adaptations to disease, stress, or aging. This method enables the study of mtDNA and mtRNA in single cells of an intact, complex tissue. The protocol presented here uses commercially-available tools, and is adaptable to a range of species and tissue types.

4.
Life (Basel) ; 13(9)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37763267

ABSTRACT

In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.

5.
Int J Mol Sci ; 24(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36768505

ABSTRACT

In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.


Subject(s)
RNA , Saccharomyces cerevisiae , RNA, Mitochondrial/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA/genetics , RNA/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Ribosomal , Mutation , Nucleotides
6.
Antioxid Redox Signal ; 36(7-9): 441-461, 2022 03.
Article in English | MEDLINE | ID: mdl-35352943

ABSTRACT

Significance: Reactive oxygen species (ROS) are well known to promote innate immune responses during and in the absence of microbial infections. However, excessive or prolonged exposure to ROS provokes innate immune signaling dysfunction and contributes to the pathogenesis of many autoimmune diseases. The relatively high basal expression of pattern recognition receptors (PRRs) in innate immune cells renders them prone to activation in response to minor intrinsic or extrinsic ROS misbalances in the absence of pathogens. Critical Issues: A prominent source of ROS are mitochondria, which are also major inter-organelle hubs for innate immunity activation, since most PRRs and downstream receptor molecules are directly located either at mitochondria or at mitochondria-associated membranes. Due to their ancestral bacterial origin, mitochondria can also act as quasi-intrinsic self-microbes that mimic a pathogen invasion and become a source of danger-associated molecular patterns (DAMPs) that triggers innate immunity from within. Recent Advances: The release of mitochondrial DAMPs correlates with mitochondrial metabolism changes and increased generation of ROS, which can lead to the oxidative modification of DAMPs. Recent studies suggest that ROS-modified mitochondrial DAMPs possess increased, persistent immunogenicity. Future Directions: Herein, we discuss how mitochondrial DAMP release and oxidation activates PRRs, changes cellular metabolism, and causes innate immune response dysfunction by promoting systemic inflammation, thereby contributing to the onset or progression of autoimmune diseases. The future goal is to understand what the tipping point for DAMPs is to become oxidized, and whether this is a road without return. Antioxid. Redox Signal. 36, 441-461.


Subject(s)
Autoimmune Diseases , Autoimmunity , Alarmins/metabolism , Autoimmune Diseases/metabolism , Humans , Mitochondria/metabolism , Oxidation-Reduction
7.
Cell Rep ; 37(4): 109888, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706234

ABSTRACT

Dysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling. Consequent mitophagy suppression amplifies the production of pro-inflammatory chemokines through protein kinase R (PKR) sensing of mitochondrial RNA. In Ajuba-/- mice, ZIKV induces early expression of pro-inflammatory chemokines associated with significantly enhanced dissemination to tissues. This work identifies Ajuba as a critical regulator of mitophagy and demonstrates a role for mitophagy in limiting systemic inflammation following infection by globally important human viruses.


Subject(s)
LIM Domain Proteins/metabolism , Mitophagy , Protein Kinases/metabolism , Signal Transduction , Zika Virus Infection/metabolism , Zika Virus/metabolism , eIF-2 Kinase/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , LIM Domain Proteins/genetics , Mice , Mice, Knockout , Protein Kinases/genetics , Vero Cells , Zika Virus/genetics , Zika Virus Infection/genetics , eIF-2 Kinase/genetics
8.
Front Immunol ; 12: 729763, 2021.
Article in English | MEDLINE | ID: mdl-34512665

ABSTRACT

The immune response to viral infection involves the recognition of pathogen-derived nucleic acids by intracellular sensors, leading to type I interferon (IFN), and downstream IFN-stimulated gene, induction. Ineffective discrimination of self from non-self nucleic acid can lead to autoinflammation, a phenomenon implicated in an increasing number of disease states, and well highlighted by the group of rare genetic disorders referred to as the type I interferonopathies. To understand the pathogenesis of these monogenic disorders, and polyfactorial diseases associated with pathogenic IFN upregulation, such as systemic lupus erythematosus and dermatomyositis, it is important to define the self-derived nucleic acid species responsible for such abnormal IFN induction. Recently, attention has focused on mitochondria as a novel source of immunogenic self nucleic acid. Best appreciated for their function in oxidative phosphorylation, metabolism and apoptosis, mitochondria are double membrane-bound organelles that represent vestigial bacteria in the cytosol of eukaryotic cells, containing their own DNA and RNA enclosed within the inner mitochondrial membrane. There is increasing recognition that a loss of mitochondrial integrity and compartmentalization can allow the release of mitochondrial nucleic acid into the cytosol, leading to IFN induction. Here, we provide recent insights into the potential of mitochondrial-derived DNA and RNA to drive IFN production in Mendelian disease. Specifically, we summarize current understanding of how nucleic acids are detected as foreign when released into the cytosol, and then consider the findings implicating mitochondrial nucleic acid in type I interferonopathy disease states. Finally, we discuss the potential for IFN-driven pathology in primary mitochondrial disorders.


Subject(s)
DNA, Mitochondrial/immunology , Interferons/metabolism , Mitochondria/immunology , Mitochondrial Diseases/immunology , RNA, Mitochondrial/immunology , Animals , Autoimmunity , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Immunity, Innate , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Signal Transduction , Up-Regulation
9.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34445229

ABSTRACT

Symbiosis between the mitochondrion and the ancestor of the eukaryotic cell allowed cellular complexity and supported life. Mitochondria have specialized in many key functions ensuring cell homeostasis and survival. Thus, proper communication between mitochondria and cell nucleus is paramount for cellular health. However, due to their archaebacterial origin, mitochondria possess a high immunogenic potential. Indeed, mitochondria have been identified as an intracellular source of molecules that can elicit cellular responses to pathogens. Compromised mitochondrial integrity leads to release of mitochondrial content into the cytosol, which triggers an unwanted cellular immune response. Mitochondrial nucleic acids (mtDNA and mtRNA) can interact with the same cytoplasmic sensors that are specialized in recognizing genetic material from pathogens. High-energy demanding cells, such as neurons, are highly affected by deficits in mitochondrial function. Notably, mitochondrial dysfunction, neurodegeneration, and chronic inflammation are concurrent events in many severe debilitating disorders. Interestingly in this context of pathology, increasing number of studies have detected immune-activating mtDNA and mtRNA that induce an aberrant production of pro-inflammatory cytokines and interferon effectors. Thus, this review provides new insights on mitochondria-driven inflammation as a potential therapeutic target for neurodegenerative and primary mitochondrial diseases.


Subject(s)
Mitochondria/immunology , Neurodegenerative Diseases/immunology , Animals , Cytokines/immunology , DNA, Mitochondrial/immunology , Humans , Mitochondria/pathology , Neurodegenerative Diseases/pathology , RNA, Mitochondrial/immunology
10.
Neurogenetics ; 22(4): 297-312, 2021 10.
Article in English | MEDLINE | ID: mdl-34345994

ABSTRACT

Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.


Subject(s)
HSP40 Heat-Shock Proteins/metabolism , Immunity, Innate/immunology , Nucleic Acids/metabolism , STAT1 Transcription Factor/metabolism , Animals , Cytosol/immunology , Cytosol/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/immunology , HSP40 Heat-Shock Proteins/immunology , Mice , Mitochondria/genetics , Mitochondria/immunology , Nucleic Acids/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , STAT1 Transcription Factor/immunology , Up-Regulation
11.
Int J Gen Med ; 14: 4259-4268, 2021.
Article in English | MEDLINE | ID: mdl-34393505

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the relationships between TP53 Pro72Arg (rs1042522) polymorphism and susceptibility to type 2 diabetes (T2DM) and its related complications. METHODS: The TP53 Pro72Arg polymorphism was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method in 206 T2DM patients and 446 healthy controls. Mitochondrial DNA (mtDNA) content, mtDNA transcriptional level and large-scale mtDNA deletion were evaluated in leukocytes of T2DM patients using fluorescence-based quantitative PCR (FQ-PCR), reverse transcriptase-quantitative PCR (RT-qPCR) and long-range PCR approaches, respectively. The data of our study were processed by GraphPad Prism software (version 7.00). RESULTS: The distribution of TP53 Pro72Arg differed in T2DM patients from the controls, with a moderately increased proportion of TP53 Arg72 variant carriers (Pro/Arg and Arg/Arg genotypes) (88.3% vs 81.2%, p=0.022; OR=1.089, 95% CI=1.018-1.164). T2DM patients with Arg/Arg genotype had significantly decreased prevalences of diabetic neuropathy and retinopathy compared to those without (6.5% vs 19.4%, p=0.018 and 14.8% vs 30.7%, p=0.018, respectively). T2DM patients with Arg/Arg genotype had higher mtDNA content and mtRNA expression level than those who were not Arg/Arg genotype (p<0.05 for all), and we did not observe mtDNA 4977-base pair (bp) deletion mutations in the leukocytes of T2DM patients. CONCLUSION: There was a significant association of the TP53 Pro72Arg polymorphism with susceptibility to T2DM, and the homozygous Arg/Arg genotype of this gene locus might be a protective factor for diabetic complications. Those results suggested that the TP53 Arg72 variant had a different association with type 2 diabetes and its complications, and it might be related to mtDNA maintenance of the TP53 Arg72 variant under hyperglycemia-induced stress.

12.
Front Cell Dev Biol ; 8: 4, 2020.
Article in English | MEDLINE | ID: mdl-32039210

ABSTRACT

In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.

13.
Cells ; 9(1)2019 12 19.
Article in English | MEDLINE | ID: mdl-31861673

ABSTRACT

Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.


Subject(s)
Mitochondria/genetics , Mitochondrial Proteins/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Transcription, Genetic
14.
Elife ; 82019 02 18.
Article in English | MEDLINE | ID: mdl-30775970

ABSTRACT

Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.


Subject(s)
Cell Nucleus/genetics , Gene Expression Regulation , Mitochondria/genetics , Transcriptome/genetics , Databases, Genetic , Disease/genetics , Genes, Mitochondrial , Humans , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
15.
J Biol Chem ; 293(51): 19633-19644, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30385512

ABSTRACT

Mitochondrial proteins are encoded in both mitochondrial and nuclear genomes. The expression levels of these two pools of mitochondrial genes are co-regulated and synchronized. Import and assembly of the nucleus-encoded oxidative phosphorylation (OXPHOS) subunits affect protein synthesis in the mitochondrial matrix by engaging the mitochondrial ribosomes. How the ribosomes at the outside of mitochondria are regulated by mitochondria, however, remains mostly unexplored. Here, using an array of biochemical assays and genetic knockdown and overexpression in HEK293 or mouse cells, we show that cytosolic rRNAs that are associated with the mitochondrial outer membrane have very different decay patterns from those of both endoplasmic reticulum-associated and -nonassociated cytosolic rRNAs. Mitochondrial intermembrane space RNase T2 (RNASET2), which has been previously shown to degrade mitochondrial RNAs, is also responsible for selective degradation of the cytosolic rRNAs on the outer membrane. We noted that the degradation activity also has a positive effect on nuclear transcription of rRNAs, suggesting a compensatory feedback mechanism, and affects protein translations in and out of mitochondria. These findings establish a mechanism for the co-regulation of gene expression programs inside and outside of mitochondria in mammalian cells.


Subject(s)
Cytosol/metabolism , Mitochondria/metabolism , Ribonucleases/metabolism , Ribosomes/metabolism , Tumor Suppressor Proteins/metabolism , HEK293 Cells , Humans , Protein Transport , RNA, Ribosomal/metabolism
16.
IUBMB Life ; 70(12): 1240-1250, 2018 12.
Article in English | MEDLINE | ID: mdl-30281911

ABSTRACT

Most eukaryotic cells contain mitochondria with a genome that evolved from their α-proteobacterial ancestor. In the course of eukaryotic evolution, the mitochondrial genome underwent a dramatic reduction in size, caused by the loss and translocation of genes. This required adjustments in mitochondrial gene expression mechanisms and resulted in a complex collaborative system of mitochondrially encoded transfer RNAs and ribosomal RNAs with nuclear encoded proteins to express the mitochondrial encoded oxidative phosphorylation (OXPHOS) proteins. In this review, we examine mitochondrial gene expression from an evolutionary point of view: to what extent can we correlate changes in the mitochondrial genome in the evolutionary lineage leading to human with the origin of new nuclear encoded proteins. We dated the evolutionary origin of mitochondrial proteins that interact with mitochondrial DNA or its RNA and/or protein products in a systematic manner and compared them with documented changes in the mitochondrial DNA. We find anecdotal but accumulating evidence that metazoan RNA-interacting proteins arose in conjunction with changes of the mitochondrial DNA. We find no substantial evidence for such compensatory evolution in new OXPHOS proteins, which appear to be constrained by the ability to form supercomplexes. © 2018 IUBMB Life, 70(12):1240-1250, 2018.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Mitochondria/genetics , Mitochondrial Proteins/genetics , Animals , Eukaryota/genetics , Humans , Nuclear Proteins/genetics , Oxidative Phosphorylation
17.
Protein Cell ; 8(10): 735-749, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28730546

ABSTRACT

Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMS-localized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.


Subject(s)
Mitochondrial Membranes/metabolism , RNA Stability , RNA/chemistry , RNA/metabolism , Ribonucleases/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line , Humans , Protein Transport , RNA/biosynthesis , RNA, Mitochondrial
18.
Elife ; 62017 01 18.
Article in English | MEDLINE | ID: mdl-28099114

ABSTRACT

The fundamental metabolic decision of a cell, the balance between respiration and fermentation, rests in part on expression of the mitochondrial genome (mtDNA) and coordination with expression of the nuclear genome (nuDNA). Previously we described mtDNA copy number depletion across many solid tumor types (Reznik et al., 2016). Here, we use orthogonal RNA-sequencing data to quantify mtDNA expression (mtRNA), and report analogously lower expression of mtRNA in tumors (relative to normal tissue) across a majority of cancer types. Several cancers exhibit a trio of mutually consistent evidence suggesting a drop in respiratory activity: depletion of mtDNA copy number, decreases in mtRNA levels, and decreases in expression of nuDNA-encoded respiratory proteins. Intriguingly, a minority of cancer types exhibit a drop in mtDNA expression but an increase in nuDNA expression of respiratory proteins, with unknown implications for respiratory activity. Our results indicate suppression of respiratory gene expression across many cancer types.


Subject(s)
Cell Respiration , DNA, Mitochondrial/genetics , Gene Expression , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/pathology , Gene Dosage , Gene Expression Profiling , Humans , Neoplasms/genetics
19.
FEBS J ; 284(12): 1767-1777, 2017 06.
Article in English | MEDLINE | ID: mdl-27926991

ABSTRACT

Mitochondria are cytosolic organelles that have many essential roles including ATP production via oxidative phosphorylation, apoptosis, iron-sulfur cluster biogenesis, heme and steroid synthesis, calcium homeostasis, and regulation of cellular redox state. One of the unique features of these organelles is the presence of an extrachromosomal mitochondrial genome (mtDNA), together with all the machinery required to replicate and transcribe mtDNA. The accurate maintenance of mitochondrial gene expression is essential for correct organellar metabolism, and is in part dependent on the levels of mtDNA and mtRNA, which are regulated by balancing synthesis against degradation. It is clear that although a number of mitochondrial nucleases have been identified, not all those responsible for the degradation of DNA or RNA have been characterized. Recent investigations, however, have revealed the contribution that mutations in the genes coding for these enzymes has made to causing pathogenic mitochondrial diseases.


Subject(s)
Endonucleases/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Humans , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology
20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3784-6, 2016 09.
Article in English | MEDLINE | ID: mdl-26370305

ABSTRACT

Hypoptopoma incognitum is a fish of the fifth most species-rich family of vertebrates and abundant in rivers from the Brazilian Amazon. Only two species of Loricariidae fish have their complete mitogenomes sequence deposited in the Genbank. An innovative RNA-based approach was used to assemble the complete mitogenome of H. incognitum with an average coverage depth of 5292×. The typical vertebrate mitochondrial features were found; 22 tRNA genes, two rRNA genes, 13 protein-coding genes, and a non-coding control region. Moreover, the use of this approach allowed the measurement of mtRNA expression levels, the punctuation pattern of editing, and the detection of heteroplasmies.


Subject(s)
Catfishes/genetics , Genome, Mitochondrial , Animals , Codon, Terminator , DNA, Mitochondrial/genetics , Fish Proteins/genetics , Gene Order , Genes, rRNA , Molecular Sequence Annotation , RNA, Transfer/genetics , Sequence Analysis, RNA , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL