Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Mol Cell Biochem ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498105

ABSTRACT

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.

2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542525

ABSTRACT

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Subject(s)
Lysosomal Storage Diseases , Mucopolysaccharidosis II , Humans , Stem Cells , Cell Line , Tooth, Deciduous , Lysosomes , Dental Pulp , Cell Differentiation/physiology , Cell Proliferation
3.
Orphanet J Rare Dis ; 19(1): 104, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454486

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked metabolic disorder predominantly affecting males. Pabinafusp alfa, an iduronate-2-sulfatase enzyme designed to cross the blood-brain barrier, was approved in Japan in 2021 as the first enzyme replacement therapy targeting both the neuropathic and somatic signs and symptoms of MPS II. This study reports caregivers' experiences of MPS II patients receiving pabinafusp alfa through qualitative interviews. METHODS: Semi-structured, qualitative interviews were conducted with caregivers at seven clinical sites in Japan using a semi-structured moderation guide (Voice of the Caregiver guide). Thematic analysis was applied to the interview transcripts to identify symptoms and health-related quality of life impacts at baseline, changes during treatment, and overall treatment experience. RESULTS: Seven caregivers from 16 trial sites participated, representing seven children aged 8-18 years who had received pabinafusp alfa for 3.3-3.5 years at the time of the interviews. Data suggest a general trend toward improvement in multiple aspects, although not all caregivers observed discernible changes. Reported cognitive improvements included language skills, concentration, self-control, eye contact, mental clarity, concept understanding, following instructions, and expressing personal needs. Further changes were reported that included musculoskeletal improvements and such somatic changes as motor function, mobility, organ involvement, joint mobility, sleep patterns, and fatigue. Four caregivers reported improvements in family quality of life, five expressed treatment satisfaction, and all seven indicated a strong willingness to continue treatment of their children with pabinafusp alfa. CONCLUSION: Caregivers' perspectives in this study demonstrate treatment satisfaction and improvement in various aspects of quality of life following therapy with pabinafusp alfa. These findings enhance understanding of pabinafusp alfa's potential benefits in treating MPS II and contribute to defining MPS II-specific outcome measures for future clinical trials.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Male , Child , Humans , Mucopolysaccharidosis II/drug therapy , Caregivers/psychology , Quality of Life , Japan , Iduronate Sulfatase/therapeutic use , Enzyme Replacement Therapy/methods , Rare Diseases/drug therapy
4.
Mol Ther Methods Clin Dev ; 32(1): 101201, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38374962

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disease caused by iduronate-2-sulfatase (IDS) deficiency, leading to accumulation of glycosaminoglycans (GAGs) and the emergence of progressive disease. Enzyme replacement therapy is the only currently approved treatment, but it leaves neurological disease unaddressed. Cerebrospinal fluid (CSF)-directed administration of AAV9.CB7.hIDS (RGX-121) is an alternative treatment strategy, but it is unknown if this approach will affect both neurologic and systemic manifestations. We compared the effectiveness of intrathecal (i.t.) and intravenous (i.v.) routes of administration (ROAs) at a range of vector doses in a mouse model of MPS II. While lower doses were completely ineffective, a total dose of 1 × 109 gc resulted in appreciable IDS activity levels in plasma but not tissues. Total doses of 1 × 1010 and 1 × 1011 gc by either ROA resulted in supraphysiological plasma IDS activity, substantial IDS activity levels and GAG reduction in nearly all tissues, and normalized zygomatic arch diameter. In the brain, a dose of 1 × 1011 gc i.t. achieved the highest IDS activity levels and the greatest reduction in GAG content, and it prevented neurocognitive deficiency. We conclude that a dose of 1 × 1010 gc normalized metabolic and skeletal outcomes, while neurologic improvement required a dose of 1 × 1011 gc, thereby suggesting the prospect of a similar direct benefit in humans.

5.
Cell Biochem Funct ; 42(2): e3932, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332678

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.


Subject(s)
Iduronate Sulfatase , Mitochondrial Diseases , Mucopolysaccharidosis II , Ubiquinone/analogs & derivatives , Humans , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/genetics , Genistein/pharmacology , Membrane Potential, Mitochondrial , Oxidative Stress , Iduronate Sulfatase/metabolism , Iduronate Sulfatase/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism
6.
Hum Gene Ther ; 35(7-8): 256-268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38085235

ABSTRACT

Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Animals , Mice , Mucopolysaccharidosis II/genetics , Iduronic Acid/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Tissue Distribution , Iduronate Sulfatase/genetics , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology
8.
Paediatr Anaesth ; 34(1): 89-91, 2024 01.
Article in English | MEDLINE | ID: mdl-37577929

ABSTRACT

Toxic epidermal necrolysis and mucopolysaccharidosis are both rare diseases that pose significant airway maintenance challenges to anesthesiologists. In this report, we describe the anesthesia management in a 4-year-old male with mucopolysaccharidosis type II who developed toxic epidermal necrolysis and presented for ophthalmic surgical procedures. Combined use of propofol and ketamine with the support of high-flow nasal oxygen enabled adequate analgesia and sedation while maintaining spontaneous ventilation and airway patency. The strategy presented in this report may contribute to enhancing the safety of sedation in spontaneously breathing children with abnormal airways.


Subject(s)
Anesthesia , Ketamine , Mucopolysaccharidosis II , Propofol , Stevens-Johnson Syndrome , Male , Humans , Child , Child, Preschool , Stevens-Johnson Syndrome/complications , Stevens-Johnson Syndrome/therapy , Anesthesia/methods , Mucopolysaccharidosis II/complications
9.
Mol Genet Metab Rep ; 37: 101003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053932

ABSTRACT

Mucopolysaccharidosis II (MPS II) is an X-linked, recessive, inborn metabolic disorder caused by defects in iduronate-2-sulfatase (IDS). The age at onset, disease severity, and rate of progression vary significantly among patients. This disease is classified into severe or mild forms depending on neurological symptom involvement. The severe form is associated with progressive cognitive decline while the mild form is predominantly associated with somatic features. Newborn screening (NBS) for MPS II has been performed since December 2016, mainly in Kyushu, Japan, where 197,700 newborns were screened using a fluorescence enzyme activity assay of dried blood spots. We diagnosed one newborn with MPS II with lower IDS activity, elevated urinary glycosaminoglycans, and a novel variant of the IDS gene. In the future, NBS for MPS II is expected to be performed in many regions of Japan and will contribute to the detection of more patients with MPS II, which is crucial to the early treatment of the disorder.

10.
Mol Genet Metab Rep ; 37: 101005, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053935

ABSTRACT

Approximately two-thirds of patients with mucopolysaccharidosis II (MPS II; Hunter syndrome) have neuronopathic disease, with central nervous system involvement; one-third have non-neuronopathic disease. This analysis of data from the Hunter Outcome Survey (HOS) compared the clinical manifestations and surgical and nonsurgical procedure history in patients with neuronopathic or non-neuronopathic MPS II. Prospective patients were identified in July 2018 in HOS for inclusion in this analysis as those with stable cognitive impairment status as assessed at 10 years of age and at a minimum of one follow-up visit at 11 to <20 years of age. Patients were stratified according to cognitive impairment status at 10 years into neuronopathic and non-neuronopathic groups, and clinical manifestations and surgical and nonsurgical procedure history were compared between the two groups. In total, 193 patients had cognitive impairment status assessments available (at 10 years and 11 to <20 years of age), 151 of whom had stable cognitive impairment status and were included; 100/151 (66.2%) were in the neuronopathic group and 51/151 (33.8%) in the non-neuronopathic group. The proportion of patients demonstrating manifestations by system organ class and the number of surgical and nonsurgical procedures per patient were broadly comparable in the neuronopathic and non-neuronopathic groups both before and after patients' 10th birthdays. The most common manifestations before patients' 10th birthdays, including facial features, joint stiffness and limited function, and hepatomegaly were reported in >80% of patients in both groups. For the neuronopathic and non-neuronopathic groups, the median [10th percentile, 90th percentile] number of different types of surgical and nonsurgical procedures per patient (3 [1, 6] and 3 [1, 7], respectively) and of all procedures per patient (4 [1, 10] and 5 [2, 11], respectively) before patients' 10th birthdays were similar, although the type of procedure may have differed. Thus, in the first two decades of life, patients with non-neuronopathic disease were found to have similar somatic manifestations to those of the neuronopathic group and undergo procedures for complications as often as those with neuronopathic disease.

11.
Mol Ther Methods Clin Dev ; 31: 101149, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38033460

ABSTRACT

Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.

12.
Cardiovasc Pathol ; 67: 107575, 2023.
Article in English | MEDLINE | ID: mdl-37730078

ABSTRACT

Mucopolysaccharidosis type II (MPSII) is a progressive lysosomal storage disease caused by mutations in the IDS gene, that leads to iduronate 2-sulfatase (IDS) enzyme deficiency. The enzyme catalyzes the first step of degradation of two glycosaminoglycans (GAGs), heparan sulfate (HS) and dermatan sulfate (DS). The consequences of MPSII are progressively harmful and can lead to death by cardiac failure. The aim of this study was to characterize the cardiovascular disease in MPSII mice. Thus, we evaluated the cardiovascular function of MPSII male mice at 6, 8, and 10 months of age, through functional, histological, and biochemical analyzes. Echocardiographic analyses showed a progressive loss in cardiac function, observed through parameters such as reduction in ejection fraction (46% in control versus 28% in MPS II at 10 months, P < .01) and fractional area change (31% versus 23%, P < .05). Similar results were found in parameters of vascular competence, obtained by echo Doppler. Both aortic dilatation and an increase in pulmonary resistance were observed at all time points in MPSII mice. The histological analyses showed an increase in the thickness of the heart valves (2-fold thicker than control values at 10 months). Biochemical analyzes confirmed GAG storage in these tissues, with a massive elevation of DS in the myocardium. Furthermore, an important increase in the activity of proteases such as cathepsin S and B (up to 5-fold control values) was found and could be related to the progressive loss of cardiac function observed in MPSII mice. In this work, we demonstrated that loss of cardiac function in MPSII mice started at 6 months of age, although its global cardiac capacity was still preserved at this time. Disease progressed at later time points leading to heart failure. The MPSII mice at later times reproduce many of the cardiovascular events found in patients with Hunter's disease.

13.
Cell Biochem Biophys ; 81(3): 533-542, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37470932

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.


Subject(s)
Mucopolysaccharidosis II , Humans , Mucopolysaccharidosis II/complications , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/diagnosis , Brain-Derived Neurotrophic Factor/therapeutic use , Enzyme Replacement Therapy , Glycosaminoglycans/metabolism , Glycosaminoglycans/therapeutic use , Biomarkers , Neural Cell Adhesion Molecules/therapeutic use
14.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Article in English | MEDLINE | ID: mdl-37023503

ABSTRACT

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Humans , Animals , Mice , Mucopolysaccharidosis II/therapy , Mice, Inbred NOD , Mice, SCID , Iduronate Sulfatase/genetics , Glycosaminoglycans
15.
Mol Genet Metab ; 140(1-2): 107557, 2023.
Article in English | MEDLINE | ID: mdl-36907694

ABSTRACT

We describe our experience with population-based newborn screening for mucopolysaccharidosis type II (MPS II) in 586,323 infants by measurement of iduronate-2-sulfatase activity in dried blood spots between December 12, 2017 and April 30, 2022. A total of 76 infants were referred for diagnostic testing, 0.01% of the screened population. Of these, eight cases of MPS II were diagnosed for an incidence of 1 in 73,290. At least four of the eight cases detected had an attenuated phenotype. In addition, cascade testing revealed a diagnosis in four extended family members. Fifty-three cases of pseudodeficiency were also identified, for an incidence of 1 in 11,062. Our data suggest that MPS II may be more common than previously recognized with a higher prevalence of attenuated cases.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Infant , Infant, Newborn , Humans , Mucopolysaccharidosis II/diagnosis , Mucopolysaccharidosis II/epidemiology , Mucopolysaccharidosis II/genetics , Neonatal Screening , Incidence , Family
16.
Front Genet ; 14: 1103620, 2023.
Article in English | MEDLINE | ID: mdl-36713083

ABSTRACT

Background: Mucopolysaccharidosis Type II (MPS II) is a rare, progressive and ultimately fatal X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene. This report conducted a retrospective analysis to investigate the clinical characteristics, genotypes and management strategies in a large cohort of Chinese patients with MPS II. Methods: In this study, we explored 130 Chinese patients with MPS II between September 2008 and April 2022. Clinical manifestations, auxiliary examination, IDS pathogenic gene variants and IDS enzyme activity, surgical history were analysed in the study. Results: A total of 130 patients were enrolled and the mean age at diagnosis was 5 years old. This study found the most common symptoms in our patients were claw-like hands, followed by coarse facial features, birthmarks (Mongolian spot), delayed development, inguinal or umbilical hernia. The most commonly cardiac manifestations were valve abnormalities, which were mitral/tricuspid valve regurgitation (71.9%) and aortic/pulmonary valve regurgitation (36.8%). We had found 43 different IDS pathogenic gene variants in 55 patients, included 16 novel variants. The variants were concentrated in exon 9 (20% = 11/55), exon 3 (20% = 11/55) and exon 8 (15% = 8/55). A total of 50 patients (38.5%) underwent surgical treatment, receiving a total of 63 surgeries. The average age of first surgery was 2.6 years, and the majority of surgery (85.7%, 54/63) was operated before 4 years old. The most common and earliest surgery was hernia repair. Three patients were died of respiratory failure. Conclusion: This study provided additional information on the clinical, cardiac ultrasound and surgical procedure in MPS II patients. Our study expanded the genotype spectrum of MPS II. Based on these data, characterization of MPS II patients group could be used to early diagnosis and treatment of the disease.

17.
Mol Genet Metab Rep ; 34: 100956, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36704405

ABSTRACT

Hunter syndrome is a rare x-linked recessive genetic disorder that affects lysosomal metabolism due to deficiency of iduronate-2-sulfatase (IDS), with subsequent accumulation of glycosaminoglycans heparan and dermatan sulfates (GAG). Enzyme replacement therapy is the only FDA-approved remedy and is an expensive life-time treatment that alleviates some symptoms of the disease without neurocognitive benefit. We previously reported successful treatment in a mouse model of mucopolysaccharidosis type II (MPS II) using adeno-associated viral vector serotype 9 encoding human IDS (AAV9.hIDS) via intracerebroventricular injection. As a less invasive and more straightforward procedure, here we report intravenously administered AAV9.hIDS in a mouse model of MPS II. In animals administered 1.5 × 1012 vg of AAV9.hIDS at 2 months of age, we observed supraphysiological levels of IDS enzyme activity in the circulation (up to 9100-fold higher than wild-type), in the tested peripheral organs (up to 560-fold higher than wild-type), but only 4% to 50% of wild type levels in the CNS. GAG levels were normalized on both sides of the blood-brain-barrier (BBB) in most of tissues tested. Despite low levels of the IDS observed in the CNS, this treatment prevented neurocognitive decline as shown by testing in the Barnes maze and by fear conditioning. This study demonstrates that a single dose of IV-administered AAV9.hIDS may be an effective and non-invasive procedure to treat MPS II that benefits both sides of the BBB, with implications for potential use of IV-administered AAV9 for other neuronopathic lysosomal diseases.

18.
Metab Brain Dis ; 38(2): 519-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36029429

ABSTRACT

Mucopolysaccharidosis type II (MPS II or Hunter Syndrome) is a lysosomal disease caused by deficient degradation of glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate due to the deficiency of the enzyme iduronate-2-sulfatase. The main treatment for MPS II is the administration of the recombinant form of the enzyme, in a process known as enzyme replacement therapy (ERT). Oxidative damage can contribute to the pathophysiology of MPS II and treatment with ERT can reduce the effects of oxidative stress. For a better understanding of pathophysiology of MPS II, we evaluated biomarkers of mitochondrial dysfunction, DNA (Deoxyribonucleic acid) damage, antioxidant defenses, reactive species production and lysosomal size in IDS-deficient HEK 293 cells and investigate the in vitro effect of genistein and coenzyme Q10 (CoQ) on these biomarkers. An increase in the production of reactive species was demonstrated, as well as an increase in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, an increase in lysosomal volume and oxidative damage to DNA were verified. There was no evidence of a change in mitochondrial function in this cell model. In the HEK 293 (human embryonic kidney 293) knockout (KO) HP10 cell model we found that genistein at concentrations of 25 and 50 µm decreased in vitro the production of reactive species and the activity of the SOD enzyme, showing an antioxidant protective effect. Still, in these cells we verified that the coenzyme Q10 in the concentrations of 5 and 10 µm decreased in vitro the activity of the SOD enzyme and in the concentration of 10 µm decreased in vitro the DNA damage, also demonstrating antioxidant protection. In conclusion, MPS II knockout cells demonstrated oxidative stress and DNA damage and genistein, as well as coenzyme Q10, have been shown to have an important protective effect in vitro against these oxidative damages.


Subject(s)
Mucopolysaccharidosis II , Humans , Mucopolysaccharidosis II/drug therapy , Genistein/pharmacology , HEK293 Cells , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Glycosaminoglycans/metabolism , Mitochondria/metabolism , Biomarkers/metabolism , Superoxide Dismutase/metabolism
19.
Genet Med ; 25(2): 100330, 2023 02.
Article in English | MEDLINE | ID: mdl-36445366

ABSTRACT

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is an X-linked condition caused by pathogenic variants in the iduronate-2-sulfatase gene. The resulting reduced activity of the enzyme iduronate-2-sulfatase leads to accumulation of glycosaminoglycans that can progressively affect multiple organ systems and impair neurologic development. In 2006, the US Food and Drug Administration approved idursulfase for intravenous enzyme replacement therapy for MPS II. After the data suggesting that early treatment is beneficial became available, 2 states, Illinois and Missouri, implemented MPS II newborn screening. Following a recommendation of the Advisory Committee on Heritable Disorders in Newborns and Children in February 2022, in August 2022, the US Secretary of Health and Human Services added MPS II to the Recommended Uniform Screening Panel, a list of conditions recommended for newborn screening. MPS II was added to the Recommended Uniform Screening Panel after a systematic evidence review reported the accuracy of screening, the benefit of presymptomatic treatment compared with usual case detection, and the feasibility of implementing MPS II newborn screening. This manuscript summarizes the findings of the evidence review that informed the Advisory Committee's decision.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Child , Humans , Infant, Newborn , United States , Mucopolysaccharidosis II/diagnosis , Mucopolysaccharidosis II/genetics , Neonatal Screening , Iduronic Acid , Iduronate Sulfatase/therapeutic use , Glycosaminoglycans , Enzyme Replacement Therapy/methods
20.
J. inborn errors metab. screen ; 11: e20230003, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1514440

ABSTRACT

Abstract Data on Mucopolysaccharidosis type II (MPS II) in Latin America are scarce. This retrospective database study, using data from the Informatics Department of the Brazilian Health System (DATASUS), aimed to estimate the prevalence of MPSII in Brazil from 2008 to 2020 and to describe demographic and clinical profiles from patients under treatment. The study population was derived from DATASUS records of MPS II (ICD-10 E76.1) diagnosed in Brazil. Initially 455 patients were found, but only 181 patients who were receiving idursulfase treatment were included in this study. Among these cases, as expected in a X-linked disease, all were males and 40% of the cases were recorded in the Southeast region, and another 34% in the Northeast region. The biggest proportion of patients (39%) were diagnosed when they were 10-19 years old. There are 212 clinical conditions associated with MPS II, although the main comorbidities related to MPSII include: abdominal/inguinal hernia, respiratory complications, and carpal tunnel syndrome. Respiratory disorders were the fifth most frequent comorbidity recorded in these patients. The healthcare professionals in Brazil more involved in the diagnosis of MPS II were radiologists, followed by geneticists and cardiologists. Despite some limitations, DATASUS is a relevant database to provide information on rare diseases such as MPS II. Most cases were reported in southeast and northeast regions, respectively. This information is crucial to help design targeted public policies.

SELECTION OF CITATIONS
SEARCH DETAIL