Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794076

ABSTRACT

Object detection is one of the core technologies for autonomous driving. Current road object detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy, night-time, and foggy scenes. Multispectral object detection based on the fusion of RGB and infrared images can effectively address the challenges of complex and changing road scenes, improving the detection performance of current algorithms in complex scenarios. However, previous multispectral detection algorithms suffer from issues such as poor fusion of dual-mode information, poor detection performance for multi-scale objects, and inadequate utilization of semantic information. To address these challenges and enhance the detection performance in complex road scenes, this paper proposes a novel multispectral object detection algorithm called MRD-YOLO. In MRD-YOLO, we utilize interaction-based feature extraction to effectively fuse information and introduce the BIC-Fusion module with attention guidance to fuse different modal information. We also incorporate the SAConv module to improve the model's detection performance for multi-scale objects and utilize the AIFI structure to enhance the utilization of semantic information. Finally, we conduct experiments on two major public datasets, FLIR_Aligned and M3FD. The experimental results demonstrate that compared to other algorithms, the proposed algorithm achieves superior detection performance in complex road scenes.

2.
Sensors (Basel) ; 24(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38733031

ABSTRACT

This study aimed to propose a portable and intelligent rehabilitation evaluation system for digital stroke-patient rehabilitation assessment. Specifically, the study designed and developed a fusion device capable of emitting red, green, and infrared lights simultaneously for photoplethysmography (PPG) acquisition. Leveraging the different penetration depths and tissue reflection characteristics of these light wavelengths, the device can provide richer and more comprehensive physiological information. Furthermore, a Multi-Channel Convolutional Neural Network-Long Short-Term Memory-Attention (MCNN-LSTM-Attention) evaluation model was developed. This model, constructed based on multiple convolutional channels, facilitates the feature extraction and fusion of collected multi-modality data. Additionally, it incorporated an attention mechanism module capable of dynamically adjusting the importance weights of input information, thereby enhancing the accuracy of rehabilitation assessment. To validate the effectiveness of the proposed system, sixteen volunteers were recruited for clinical data collection and validation, comprising eight stroke patients and eight healthy subjects. Experimental results demonstrated the system's promising performance metrics (accuracy: 0.9125, precision: 0.8980, recall: 0.8970, F1 score: 0.8949, and loss function: 0.1261). This rehabilitation evaluation system holds the potential for stroke diagnosis and identification, laying a solid foundation for wearable-based stroke risk assessment and stroke rehabilitation assistance.


Subject(s)
Neural Networks, Computer , Photoplethysmography , Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Photoplethysmography/methods , Photoplethysmography/instrumentation , Stroke/physiopathology , Male , Female , Middle Aged , Adult , Plethysmography/methods , Plethysmography/instrumentation , Equipment Design , Wearable Electronic Devices , Algorithms
3.
Rev Neurosci ; 35(4): 373-386, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38157429

ABSTRACT

Alzheimer's disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer's disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG-fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG-fMRI.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Magnetic Resonance Imaging , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnosis , Electroencephalography/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Multimodal Imaging/methods
4.
Comput Biol Med ; 167: 107590, 2023 12.
Article in English | MEDLINE | ID: mdl-37897962

ABSTRACT

A large number of traffic accidents were caused by drowsiness while driving. In-vehicle alert system based on physiological signals was one of the most promising solutions to monitor driving fatigue. However, different physiological modalities can be used, and many relative studies compared different modalities without considering the implementation feasibility of portable or wearable devices. Moreover, evaluations of each modality in previous studies were based on inconsistent choices of fatigue label and signal features, making it hard to compare the results of different studies. Therefore, the modality comparison and fusion for continuous drowsiness estimation while driving was still unclear. This work sought to comprehensively compare widely-used physiological modalities, including forehead electroencephalogram (EEG), electrooculogram (EOG), R-R intervals (RRI) and breath, in a hardware setting feasible for portable or wearable devices to monitor driving fatigue. Moreover, a more general conclusion on modality comparison and fusion was reached based on the regression of features or their combinations and the awake-to-drowsy transition. Finally, the feature subset of fused modalities was produced by feature selection method, to select the optimal feature combination and reduce computation consumption. Considering practical feasibility, the most effective combination with the highest correlation coefficient was using forehead EEG or EOG, along with RRI and RRI-derived breath. If more comfort and convenience was required, the combination of RRI and RRI-derived breath was also promising.


Subject(s)
Electroencephalography , Wakefulness , Humans , Electroencephalography/methods , Accidents, Traffic/prevention & control , Electrooculography/methods , Fatigue
5.
Heliyon ; 9(8): e19266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664757

ABSTRACT

Accurate segmentation of pathological regions in brain magnetic resonance images (MRI) is essential for the diagnosis and treatment of brain tumors. Multi-modality MRIs, which offer diverse feature information, are commonly utilized in brain tumor image segmentation. Deep neural networks have become prevalent in this field; however, many approaches simply concatenate different modalities and input them directly into the neural network for segmentation, disregarding the unique characteristics and complementarity of each modality. In this study, we propose a brain tumor image segmentation method that leverages deep residual learning with multi-modality image feature fusion. Our approach involves extracting and fusing distinct and complementary features from various modalities, fully exploiting the multi-modality information within a deep convolutional neural network to enhance the performance of brain tumor image segmentation. We evaluate the effectiveness of our proposed method using the BraTS2021 dataset and demonstrate that deep residual learning with multi-modality image feature fusion significantly improves segmentation accuracy. Our method achieves competitive segmentation results, with Dice values of 83.3, 89.07, and 91.44 for enhanced tumor, tumor core, and whole tumor, respectively. These findings highlight the potential of our method in improving brain tumor diagnosis and treatment through accurate segmentation of pathological regions in brain MRIs.

6.
Inf Process Manag ; 59(1): 102782, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34629687

ABSTRACT

In the early diagnosis of the Coronavirus disease (COVID-19), it is of great importance for either distinguishing severe cases from mild cases or predicting the conversion time that mild cases would possibly convert to severe cases. This study investigates both of them in a unified framework by exploring the problems such as slight appearance difference between mild cases and severe cases, the interpretability, the High Dimension and Low Sample Size (HDLSS) data, and the class imbalance. To this end, the proposed framework includes three steps: (1) feature extraction which first conducts the hierarchical segmentation on the chest Computed Tomography (CT) image data and then extracts multi-modality handcrafted features for each segment, aiming at capturing the slight appearance difference from different perspectives; (2) data augmentation which employs the over-sampling technique to augment the number of samples corresponding to the minority classes, aiming at investigating the class imbalance problem; and (3) joint construction of classification and regression by proposing a novel Multi-task Multi-modality Support Vector Machine (MM-SVM) method to solve the issue of the HDLSS data and achieve the interpretability. Experimental analysis on two synthetic and one real COVID-19 data set demonstrated that our proposed framework outperformed six state-of-the-art methods in terms of binary classification and regression performance.

7.
Comput Biol Med ; 150: 106210, 2022 11.
Article in English | MEDLINE | ID: mdl-37859295

ABSTRACT

Automatic breast image classification plays an important role in breast cancer diagnosis, and multi-modality image fusion may improve classification performance. However, existing fusion methods ignore relevant multi-modality information in favor of improving the discriminative ability of single-modality features. To improve classification performance, this paper proposes a multi-modality relation attention network with consistent regularization for breast tumor classification using diffusion-weighted imaging (DWI) and apparent dispersion coefficient (ADC) images. Within the proposed network, a novel multi-modality relation attention module improves the discriminative ability of single-modality features by exploring the correlation information between two modalities. In addition, a module ensures the classification consistency of ADC and DWI modality, thus improving robustness to noise. Experimental results on our database demonstrate that the proposed method is effective for breast tumor classification, and outperforms existing multi-modality fusion methods. The AUC, accuracy, specificity, and sensitivity are 85.1%, 86.7%, 83.3%, and 88.9% respectively.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Breast , Breast Neoplasms/diagnostic imaging
8.
Front Hum Neurosci ; 15: 651349, 2021.
Article in English | MEDLINE | ID: mdl-34113244

ABSTRACT

Recent advances in neuroscience indicate that analysis of bio-signals such as rest state electroencephalogram (EEG) and eye-tracking data can provide more reliable evaluation of children autism spectrum disorder (ASD) than traditional methods of behavior measurement relying on scales do. However, the effectiveness of the new approaches still lags behind the increasing requirement in clinical or educational practices as the "bio-marker" information carried by the bio-signal of a single-modality is likely insufficient or distorted. This study proposes an approach to joint analysis of EEG and eye-tracking for children ASD evaluation. The approach focuses on deep fusion of the features in two modalities as no explicit correlations between the original bio-signals are available, which also limits the performance of existing methods along this direction. First, the synchronization measures, information entropy, and time-frequency features of the multi-channel EEG are derived. Then a random forest applies to the eye-tracking recordings of the same subjects to single out the most significant features. A graph convolutional network (GCN) model then naturally fuses the two group of features to differentiate the children with ASD from the typically developed (TD) subjects. Experiments have been carried out on the two types of the bio-signals collected from 42 children (21 ASD and 21 TD subjects, 3-6 years old). The results indicate that (1) the proposed approach can achieve an accuracy of 95% in ASD detection, and (2) strong correlations exist between the two bio-signals collected even asynchronously, in particular the EEG synchronization against the face related/joint attentions in terms of covariance.

9.
Med Image Anal ; 68: 101909, 2021 02.
Article in English | MEDLINE | ID: mdl-33341494

ABSTRACT

Gross tumor volume (GTV) and clinical target volume (CTV) delineation are two critical steps in the cancer radiotherapy planning. GTV defines the primary treatment area of the gross tumor, while CTV outlines the sub-clinical malignant disease. Automatic GTV and CTV segmentation are both challenging for distinct reasons: GTV segmentation relies on the radiotherapy computed tomography (RTCT) image appearance, which suffers from poor contrast with the surrounding tissues, while CTV delineation relies on a mixture of predefined and judgement-based margins. High intra- and inter-user variability makes this a particularly difficult task. We develop tailored methods solving each task in the esophageal cancer radiotherapy, together leading to a comprehensive solution for the target contouring task. Specifically, we integrate the RTCT and positron emission tomography (PET) modalities together into a two-stream chained deep fusion framework taking advantage of both modalities to facilitate more accurate GTV segmentation. For CTV segmentation, since it is highly context-dependent-it must encompass the GTV and involved lymph nodes while also avoiding excessive exposure to the organs at risk-we formulate it as a deep contextual appearance-based problem using encoded spatial distances of these anatomical structures. This better emulates the margin- and appearance-based CTV delineation performed by oncologists. Adding to our contributions, for the GTV segmentation we propose a simple yet effective progressive semantically-nested network (PSNN) backbone that outperforms more complicated models. Our work is the first to provide a comprehensive solution for the esophageal GTV and CTV segmentation in radiotherapy planning. Extensive 4-fold cross-validation on 148 esophageal cancer patients, the largest analysis to date, was carried out for both tasks. The results demonstrate that our GTV and CTV segmentation approaches significantly improve the performance over previous state-of-the-art works, e.g., by 8.7% increases in Dice score (DSC) and 32.9mm reduction in Hausdorff distance (HD) for GTV segmentation, and by 3.4% increases in DSC and 29.4mm reduction in HD for CTV segmentation.


Subject(s)
Esophageal Neoplasms , Radiotherapy Planning, Computer-Assisted , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Humans , Positron-Emission Tomography , Tomography, X-Ray Computed , Tumor Burden
10.
Ultrasonics ; 104: 106093, 2020 May.
Article in English | MEDLINE | ID: mdl-32151876

ABSTRACT

Color Doppler (CD) ultrasound has been commonly employed in biomedical field to get hemodynamic information. However, reliable diagnostic evaluation and criteria for vascular diseases may not be provided due to technical limitations of CD, including single-directional measurement, aliasing, and limited imaging conditions. In this study, adaptive hybrid (AH) scheme is proposed to enhance measurement accuracy of conventional CD. It can improve the accuracy of velocity field measurement by replacing erroneous vectors in the measured CD results with the correct vectors obtained from a speckle image velocimetry (SIV) technique. The performance of the proposed AH technique was validated through in vitro experiments for various flow rates and insonation angle conditions, comparing conventional velocimetry techniques. The in vitro experiments demonstrated that the AH technique could measure flow velocity with better accuracy than the CD with bias errors of below 0.7 mm/s. The clinical applicability of the AH was also validated by measuring venous flows at human lower extremity, checking constant volumetric flow rates. Flow rates measured by the AH were maintained along the vein, while the CD and SIV results varied. As a result, the AH can provide improved measurement accuracy without installing a new supplementary equipment. It would be effectively utilized for analyzing flow dynamics and diagnosing valve-related disease.


Subject(s)
Blood Flow Velocity/physiology , Lower Extremity/blood supply , Ultrasonography, Doppler, Color/methods , Vascular Diseases/diagnostic imaging , Adult , Algorithms , Female , Humans , Image Enhancement , Male , Phantoms, Imaging , Transducers
11.
Article in English | MEDLINE | ID: mdl-25300451

ABSTRACT

We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL