Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Environ Sci Technol ; 58(27): 12073-12081, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38923518

ABSTRACT

Ozone and its oxidation products result in negative health effects when inhaled. Despite painted surfaces being the most abundant surface in indoor spaces, surface loss remains one of the largest uncertainties in the indoor ozone budget. Here, ozone uptake coefficients (γO3) on painted surfaces were measured in a flow-through reactor where 79% of the inner surfaces were removable painted glass sheets. Flat white paint initially had a high uptake coefficient (8.3 × 10-6) at 20% RH which plateaued to 1.1 × 10-6 as the paint aged in an indoor office over weeks. Increasing the RH from 0 to 75% increased γO3 by a factor of 3.0, and exposure to 134 ppb of α-terpineol for 1 h increased γO3 by a factor of 1.6 at 20% RH. RH also increases α-terpineol partitioning to paint, further increasing ozone loss, but the type of paint (flat, eggshell, satin, semigloss) had no significant effect. A kinetic multilayer model captures the dependence of γO3 on RH and the presence of α-terpineol, indicating the reacto-diffusive depth for O3 is 1 to 2 µm. Given the similarity of the kinetics on aged surfaces across many paint types and the sustained reactivity during aging, these results suggest a mechanism for catalytic loss.


Subject(s)
Ozone , Paint , Ozone/chemistry , Humidity , Volatile Organic Compounds , Air Pollution, Indoor
2.
ACS EST Air ; 1(6): 511-524, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38884193

ABSTRACT

Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS ( k M T / k M T S ). In particular, k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.

3.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843196

ABSTRACT

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Subject(s)
Aerosols , Epoxy Compounds/chemistry , Hydrogen-Ion Concentration , Acid-Base Equilibrium
4.
J Cheminform ; 16(1): 34, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520014

ABSTRACT

Kinetic process models are widely applied in science and engineering, including atmospheric, physiological and technical chemistry, reactor design, or process optimization. These models rely on numerous kinetic parameters such as reaction rate, diffusion or partitioning coefficients. Determining these properties by experiments can be challenging, especially for multiphase systems, and researchers often face the task of intuitively selecting experimental conditions to obtain insightful results. We developed a numerical compass (NC) method that integrates computational models, global optimization, ensemble methods, and machine learning to identify experimental conditions with the greatest potential to constrain model parameters. The approach is based on the quantification of model output variance in an ensemble of solutions that agree with experimental data. The utility of the NC method is demonstrated for the parameters of a multi-layer model describing the heterogeneous ozonolysis of oleic acid aerosols. We show how neural network surrogate models of the multiphase chemical reaction system can be used to accelerate the application of the NC for a comprehensive mapping and analysis of experimental conditions. The NC can also be applied for uncertainty quantification of quantitative structure-activity relationship (QSAR) models. We show that the uncertainty calculated for molecules that are used to extend training data correlates with the reduction of QSAR model error. The code is openly available as the Julia package KineticCompass.

5.
Annu Rev Phys Chem ; 75(1): 111-135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360527

ABSTRACT

Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.

6.
Sci Total Environ ; 892: 164455, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37245820

ABSTRACT

Hydrogen peroxide (H2O2), hydroxyl radicals (OH), hydroperoxyl (HO2), and superoxide (O2-) radicals interacting with aerosol particles significantly affect the atmospheric pollutant budgets. A multiphase chemical kinetic box model (PKU-MARK), including the multiphase processes of transition metal ions (TMI) and their organic complexes (TMI-OrC), was built to numerically drive H2O2 chemical behaviors in the aerosol particle liquid phase using observational data obtained from a field campaign in rural China. Instead of relying on fixed uptake coefficient values, a thorough simulation of multiphase H2O2 chemistry was performed. In the aerosol liquid phase, light-driven TMI-OrC reactions promote OH, HO2/O2-, and H2O2 recycling and spontaneous regenerations. The in-situ generated aerosol H2O2 would offset gas-phase H2O2 molecular transfer into the aerosol bulk phase and promote the gas-phase level. When combined with the multiphase loss and in-situ aerosol generation involving TMI-OrC mechanism, the HULIS-Mode significantly improves the consistency between modeled and measured gas-phase H2O2 levels. Aerosol liquid phase could be a pivotal potential source of aqueous H2O2 and influence the multiphase budgets. Our work highlights the intricate and significant effects of aerosol TMI and TMI-OrC interactions on the multiphase partitioning of H2O2 when assessing atmospheric oxidant capacity.


Subject(s)
Air Pollutants , Coordination Complexes , Peroxides , Hydrogen Peroxide , Air Pollutants/analysis , Aerosols/analysis
7.
Environ Sci Technol ; 56(23): 16611-16620, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36378716

ABSTRACT

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (•OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase •OH exposure (∼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without •OH revealed that decomposition of oligomers by heterogeneous •OH oxidation acts as a sink for •OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this •OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.


Subject(s)
Air Pollutants , Sulfates , Sulfates/chemistry , Atmosphere/chemistry , Hemiterpenes , Butadienes , Aerosols/chemistry , Particulate Matter/analysis , Dust/analysis , Oxidation-Reduction , Oxidative Stress , Air Pollutants/analysis
8.
Proc Natl Acad Sci U S A ; 119(38): e2205610119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095180

ABSTRACT

Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below ∼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.


Subject(s)
Atmosphere , Biomass , Carbon , Atmosphere/chemistry , Carbon/analysis , Ozone
9.
Environ Sci Technol ; 56(15): 10596-10607, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35834796

ABSTRACT

Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.


Subject(s)
Atmosphere , Hemiterpenes , Acids/chemistry , Aerosols/chemistry , Atmosphere/chemistry , Butadienes , Hydrogen-Ion Concentration
10.
Environ Sci Technol ; 56(12): 7771-7778, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35609338

ABSTRACT

There is a large gap between the simulated and observed sulfate concentrations during winter haze events in North China. Although multiphase sulfate formation mechanisms have been proposed, they have not been evaluated using chemical transport models. In this study, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to apportion sulfate formation. It was found that Mn-catalyzed oxidation on aerosol surfaces was the dominant sulfate formation pathway, accounting for 92.3 ± 3.5% of the sulfate formation during haze events. Gas-phase oxidation contributed 3.1 ± 0.5% to the sulfate formation due to the low OH levels. The H2O2 oxidation in aerosol water accounted for 4.2 ± 3.6% of the sulfate formation, caused by the rapid consumption of H2O2. The contributions of O3, NO2 oxidation, and transition metal ion-catalyzed reactions in aerosol water could be negligible owing to the low aerosol water content, low pH, and high ionic strength. The contributions from in-cloud reactions were negligible due to the barrier provided by stable stratification during winter haze events.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Hydrogen Peroxide , Particulate Matter/analysis , Seasons , Sulfates/chemistry , Sulfur Oxides , Water
11.
Proc Natl Acad Sci U S A ; 117(8): 3960-3966, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32041887

ABSTRACT

Although regional haze adversely affects human health and possibly counteracts global warming from increasing levels of greenhouse gases, the formation and radiative forcing of regional haze on climate remain uncertain. By combining field measurements, laboratory experiments, and model simulations, we show a remarkable role of black carbon (BC) particles in driving the formation and trend of regional haze. Our analysis of long-term measurements in China indicates declined frequency of heavy haze events along with significantly reduced SO2, but negligibly alleviated haze severity. Also, no improving trend exists for moderate haze events. Our complementary laboratory experiments demonstrate that SO2 oxidation is efficiently catalyzed on BC particles in the presence of NO2 and NH3, even at low SO2 and intermediate relative humidity levels. Inclusion of the BC reaction accounts for about 90-100% and 30-50% of the sulfate production during moderate and heavy haze events, respectively. Calculations using a radiative transfer model and accounting for the sulfate formation on BC yield an invariant radiative forcing of nearly zero W m-2 on the top of the atmosphere throughout haze development, indicating small net climatic cooling/warming but large surface cooling, atmospheric heating, and air stagnation. This BC catalytic chemistry facilitates haze development and explains the observed trends of regional haze in China. Our results imply that reduction of SO2 alone is insufficient in mitigating haze occurrence and highlight the necessity of accurate representation of the BC chemical and radiative properties in predicting the formation and assessing the impacts of regional haze.

12.
Proc Natl Acad Sci U S A ; 117(3): 1354-1359, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31900361

ABSTRACT

Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes.

13.
Proc Natl Acad Sci U S A ; 113(42): 11776-11781, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27688763

ABSTRACT

Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42-) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42- aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.

14.
Chemistry ; 22(38): 13451-4, 2016 Sep 12.
Article in English | MEDLINE | ID: mdl-27338000

ABSTRACT

Hydantoins are an important class of heterocycles with applications in pharmacy, agriculture, and as intermediates in organic synthesis. Traditional synthetic procedures to access hydantoins are target oriented with multiple synthetic steps and often use reagents that are not commercially available or sustainable. Herein, an efficient process is described for accessing hydantoins starting from commercially available amines using consecutive gas-liquid transformations (oxygen, carbon dioxide). This semi-continuous process produced ten benzylic/aliphatic hydantoins in good overall yields (52-84 %).

15.
Annu Rev Anal Chem (Palo Alto Calif) ; 9(1): 117-43, 2016 Jun 12.
Article in English | MEDLINE | ID: mdl-27306308

ABSTRACT

This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

SELECTION OF CITATIONS
SEARCH DETAIL