Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol Physiol ; 97(1): 11-28, 2024.
Article in English | MEDLINE | ID: mdl-38717370

ABSTRACT

AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.


Subject(s)
Animal Migration , Muscle, Skeletal , Phenotype , Seasons , Sparrows , Animals , Animal Migration/physiology , Muscle, Skeletal/physiology , Body Composition/physiology , Male , Pectoralis Muscles/physiology , Female
2.
Scand J Med Sci Sports ; 34(6): e14668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802727

ABSTRACT

Multiple intramuscular variables have been proposed to explain the high variability in resistance training induced muscle hypertrophy across humans. This study investigated if muscular androgen receptor (AR), estrogen receptor α (ERα) and ß (ERß) content and fiber capillarization are associated with fiber and whole-muscle hypertrophy after chronic resistance training. Male (n = 11) and female (n = 10) resistance training novices (22.1 ± 2.2 years) trained their knee extensors 3×/week for 10 weeks. Vastus lateralis biopsies were taken at baseline and post the training period to determine changes in fiber type specific cross-sectional area (CSA) and fiber capillarization by immunohistochemistry and, intramuscular AR, ERα and ERß content by Western blotting. Vastus lateralis volume was quantified by MRI-based 3D segmentation. Vastus lateralis muscle volume significantly increased over the training period (+7.22%; range: -1.82 to +18.8%, p < 0.0001) but no changes occurred in all fiber (+1.64%; range: -21 to +34%, p = 0.869), type I fiber (+1.33%; range: -24 to +41%, p = 0.952) and type II fiber CSA (+2.19%; range: -23 to +29%, p = 0.838). However, wide inter-individual ranges were found. Resistance training increased the protein expression of ERα but not ERß and AR, and the increase in ERα content was positively related to changes in fiber CSA. Only for the type II fibers, the baseline capillary-to-fiber-perimeter index was positively related to type II fiber hypertrophy but not to whole muscle responsiveness. In conclusion, an upregulation of ERα content and an adequate initial fiber capillarization may be contributing factors implicated in muscle fiber hypertrophy responsiveness after chronic resistance training.


Subject(s)
Estrogen Receptor alpha , Estrogen Receptor beta , Muscle Fibers, Skeletal , Quadriceps Muscle , Receptors, Androgen , Resistance Training , Humans , Male , Resistance Training/methods , Female , Estrogen Receptor beta/metabolism , Estrogen Receptor alpha/metabolism , Young Adult , Receptors, Androgen/metabolism , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply , Quadriceps Muscle/diagnostic imaging , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Adult , Hypertrophy , Capillaries , Magnetic Resonance Imaging
3.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37531568

ABSTRACT

Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.


Due to its extensive biological functions, melatonin has been widely used in animal production in recent years. The purpose of this study was to investigate the effects of melatonin on growth performance, muscle development, and lipid metabolism of weaned piglets. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation daily had no effect on growth performance, but increased muscle weight, eye muscle area, and decreased the liver weight in weaned piglets. Consistently, the cross-sectional area of myofiber increased, while triglyceride levels decreased in muscle. Melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation in muscle through transcriptome sequencing. Additionally, melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial function. Moreover, melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development. Additionally, melatonin inhibited the mRNA expression related to fat synthesis while improved mitochondrial function in muscle. Together, our results suggest melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, enhance mitochondrial function and decrease fat deposition in muscle.


Subject(s)
Melatonin , Swine Diseases , Animals , Swine , Lipid Metabolism , Melatonin/pharmacology , Melatonin/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , RNA, Messenger/genetics , Dietary Supplements , Hypertrophy/veterinary , Swine Diseases/metabolism
4.
J Agric Food Chem ; 71(1): 499-511, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36563293

ABSTRACT

Neoruscogenin is a plant-origin sapogenin that has the potential to modulate muscle growth among the small-molecule compounds that we previously predicted by artificial intelligence to target myostatin (MSTN). This study aimed to elucidate the biological role of neoruscogenin on muscle growth and its relationship with MSTN. Using molecular biological techniques, we found that neoruscogenin inhibited MSTN maturation, thereby repressing its signal transduction; further facilitated protein synthesis metabolism and reduced protein degradation metabolism, ultimately promoting the differentiation of myoblasts and hypertrophy of muscle fibers; and had the effect of repairing muscle injury. This study enriched the biological functions of neoruscogenin and provided a theoretical basis for the treatment of human myopathy and its application in the livestock industry.


Subject(s)
Myostatin , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Myostatin/genetics , Myostatin/metabolism , Artificial Intelligence , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Muscle Fibers, Skeletal/metabolism , Hypertrophy , Muscle, Skeletal/metabolism
5.
Front Physiol ; 6: 283, 2015.
Article in English | MEDLINE | ID: mdl-26557092

ABSTRACT

Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

SELECTION OF CITATIONS
SEARCH DETAIL